Climate Change and Power:
Carbon Dioxide Emissions Costs
and Electricity Resource Planning

Prepared by:
Lucy Johnston, Ezra Hausman,
Anna Sommer, Bruce Biewald,
Tim Woolf, David Schlissel,
Amy Roschelle, and David White

Synapse Energy Economics
22 Pearl Street, Cambridge, MA 02139
www.synapse-energy.com
617-661-3248

March 2, 2007
Table of Contents

Executive Summary .. 3

1. Introduction .. 12

2. Growing scientific evidence of climate change ... 14

3. US carbon emissions .. 16

4. Governments worldwide have agreed to respond to climate change by reducing greenhouse gas emissions ... 19

5. Legislators, state governmental agencies, shareholders, and corporations are working to reduce greenhouse gas emissions from the United States 21
 5.1 Federal initiatives ... 22
 5.2 State and regional policies .. 27
 5.3 Investor and corporate action .. 34

6. Anticipating the cost of reducing carbon emissions in the electric sector 37
 6.1 International market transactions ... 39
 6.2 Values used in electric resource planning .. 39
 6.3 Analyses of carbon emissions reduction costs ... 41
 6.4 Factors that affect projections of carbon cost ... 46
 6.5 Synapse forecast of carbon dioxide allowance prices .. 50

7. Conclusion .. 53

References ... 57
Executive Summary

The fact of human-induced global climate change as a consequence of our greenhouse gas emissions is now well established, and the only remaining questions among mainstream scientists concern the nature and timing of future disruptions and dislocations and the magnitude of the socio-economic impacts. It is also generally agreed that different CO₂ emissions trajectories will lead to varying levels of environmental, economic, and social costs – which means that the more sharply and the sooner we can reduce emissions, the greater the avoided costs will be.

This report is designed to assist utilities, regulators, consumer advocates and others in projecting the future cost of complying with carbon dioxide regulations in the United States.¹ These cost forecasts are necessary for use in long-term electricity resource planning, in electricity resource economics, and in utility risk management.

We recognize that there is considerable uncertainty inherent in projecting long-term carbon emissions costs, not least of which concerns the timing and form of future emissions regulations in the United States. However, this uncertainty is no reason to ignore this very real component of future production cost. In fact, this type of uncertainty is similar to that of other critical electricity cost drivers such as fossil-fuel prices.

Accounting for Climate Change Regulations in Electricity Planning

The United States contributes more than any other nation, by far, to global greenhouse gas emissions on both a total and a per capita basis. The United States contributes 24 percent of the world CO₂ emissions, but has only 4.6 percent of the population.

Within the United States, the electricity sector is responsible for roughly 39% of CO₂ emissions. Within the electricity industry, roughly 82% of CO₂ emissions come from coal-fired plants, roughly 13% come from gas-fired plants, and roughly 5% come from oil-fired plants.

Because of its contribution to US and worldwide CO₂ emissions, the US electricity industry will clearly need to play a critical role in reducing greenhouse gas (GHG) emissions. In addition, the electricity industry is composed of large point sources of emissions, and it is often easier and more cost-effective to control emissions from large sources than multiple small sources. Analyses by the US Energy Information Administration indicate that 65% to 90% of energy-related carbon dioxide emissions reductions are likely to come from the electric sector under a wide range of economy-wide federal policy scenarios.²

¹ This paper does not address the determination of an “externality value” associated with greenhouse gas emissions. The externality value would include societal costs beyond those internalized into market costs through regulation. While this report refers to the ecological and socio-economic impacts of climate change, estimation of the external costs of greenhouse gas emissions is beyond the scope of this analysis.

In this context, the failure of entities in the electric sector to anticipate the future costs associated with carbon dioxide regulations is short-sighted, economically unjustifiable, and ultimately self-defeating. Long-term resource planning and investment decisions that do not quantify the likely future cost of CO2 regulations will understate the true cost of future resources, and thus will result in uneconomic, imprudent decisions. Generating companies will naturally attempt to pass these unnecessarily high costs on to electricity ratepayers. Thus, properly accounting for future CO2 regulations is as much a consumer issue as it is an issue of prudent resource selection.

Some utility planners argue that the cost of complying with future CO2 regulations involves too much uncertainty, and thus they leave the cost out of the planning process altogether. This approach results in making an implicit assumption that the cost of complying with future CO2 regulations will be zero. This assumption of zero cost will apply to new generation facilities that may operate for 50 or more years into the future. In this report, we demonstrate that under all reasonable forecasts of the near- to mid-term future, the cost of complying with CO2 regulations will certainly be greater than zero.

Federal Initiatives to Regulate Greenhouse Gases

The scientific consensus on climate change has spurred efforts around the world to reduce greenhouse gas emissions, many of which are grounded in the United Nations Framework Convention on Climate Change (UNFCCC). The United States is a signatory to this convention, which means that it has agreed to a goal of “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.” However, the United States has not yet agreed to the legally binding limits on greenhouse gas emissions contained in the Kyoto Protocol, a supplement to the UNFCCC.
<table>
<thead>
<tr>
<th>Proposed National Policy</th>
<th>Title or Description</th>
<th>Year Proposed</th>
<th>Emission Targets</th>
<th>Sectors Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCain Lieberman SA 2028</td>
<td>Climate Stewardship Act</td>
<td>2003</td>
<td>Cap at 2000 levels</td>
<td>Economy-wide, large emitting sources</td>
</tr>
<tr>
<td>Sen. Feinstein</td>
<td>Strong Economy and Climate Protection Act</td>
<td>2006</td>
<td>Stabilize emissions through 2010; 0.5% cut per year from 2011-15; 1% cut per year from 2016-2020. Total reduction is 7.25% below current levels.</td>
<td>Economy-wide, large emitting sources</td>
</tr>
<tr>
<td>Jeffords S. 150</td>
<td>Multi-pollutant legislation</td>
<td>2005</td>
<td>2.050 billion tons beginning 2010</td>
<td>Existing and new fossil-fuel fired electric generating plants > 15 MW</td>
</tr>
<tr>
<td>Carper S. 843</td>
<td>Clean Air Planning Act</td>
<td>2005</td>
<td>2006 levels (2.655 billion tons CO2) starting in 2009, 2001 levels (2.454 billion tons CO2) starting in 2013.</td>
<td>Existing and new fossil-fuel fired, nuclear, and renewable electric generating plants > 25 MW</td>
</tr>
</tbody>
</table>

Nonetheless, there have been several important attempts at the federal level to limit the emissions of greenhouse gases in the United States. Table ES-1 presents a summary of federal legislation that has been introduced in recent years. Most of this legislation includes some form of mandatory national limits on the emissions of greenhouse gases, as well as market-based cap and trade mechanisms to assist in meeting those limits.
State and Regional Initiatives to Regulate Greenhouse Gases

Many states across the country have not waited for federal policies, and are developing and implementing climate change-related policies that have a direct bearing on electric resource planning. States, acting individually and through regional coordination, have been the leaders on climate change policies in the United States.

State policies generally fall into the following categories: (a) direct policies that require specific emission reductions from electric generation sources; (b) indirect policies that affect electric sector resource mix such as through promoting low-emission electric sources; (c) legal proceedings; or (d) voluntary programs including educational efforts and energy planning. Table ES-2 presents a summary of types of policies with recent state policies on climate change listed on the right side of the table.

Table ES-2. Summary of Individual State Climate Change Policies

<table>
<thead>
<tr>
<th>Type of Policy</th>
<th>State Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>• Power plant emission restrictions (e.g. cap or emission rate)</td>
<td>• MA, NH</td>
</tr>
<tr>
<td>• New plant emission restrictions</td>
<td>• OR, WA</td>
</tr>
<tr>
<td>• State GHG reduction targets</td>
<td>• CT, NJ, ME, MA, CA, NM, NY, OR, WA</td>
</tr>
<tr>
<td>• Fuel/generation efficiency</td>
<td>• CA vehicle emissions standards to be adopted by CT, NY, ME, MA, NJ, OR, PA, RI, VT, WA</td>
</tr>
<tr>
<td>Indirect (clean energy)</td>
<td></td>
</tr>
<tr>
<td>• Load-based GHG cap</td>
<td>• CA</td>
</tr>
<tr>
<td>• GHG in resource planning</td>
<td>• CA, WA, OR, MT, KY</td>
</tr>
<tr>
<td>• Renewable portfolio standards</td>
<td>• 22 states and D.C.</td>
</tr>
<tr>
<td>• Energy efficiency/renewable charges and funding; energy efficiency programs</td>
<td>• More than half the states</td>
</tr>
<tr>
<td>• Net metering, tax incentives</td>
<td>• 41 states</td>
</tr>
<tr>
<td>Lawsuits</td>
<td></td>
</tr>
<tr>
<td>• States, environmental groups sue EPA to determine whether greenhouse gases can be regulated under the Clean Air Act</td>
<td>• States include CA, CT, ME, MA, NM, NY, OR, RI, VT, and WI</td>
</tr>
<tr>
<td>• States sue individual companies to reduce GHG emissions</td>
<td>• NY, CT, CA, IA, NJ, RI, VT, WI</td>
</tr>
<tr>
<td>Climate change action plans</td>
<td>• 28 states, with NC and AZ in progress</td>
</tr>
</tbody>
</table>

Several states require that regulated utilities evaluate costs or risks associated with greenhouse gas emissions regulations in long-range planning or resource procurement. Some of the states require that companies use a specific value, while other states require that companies consider the risk of future regulation in their planning process. Table ES-3 summarizes state requirements for considering greenhouse gas emissions in electricity resource planning.
Table ES-3. Requirements for Consideration of GHG Emissions in Electric Resource Decisions

<table>
<thead>
<tr>
<th>Program type</th>
<th>State</th>
<th>Description</th>
<th>Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG value in resource planning</td>
<td>CA</td>
<td>PUC requires that regulated utility IRPs include carbon adder of $8/ton CO₂, escalating at 5% per year.</td>
<td>April 1, 2005</td>
<td>CPUC Decision 05-04-024</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>WA</td>
<td>Law requiring that cost of risks associated with carbon emissions be included in Integrated Resource Planning for electric and gas utilities</td>
<td>January, 2006</td>
<td>WAC 480-100-238 and 480-90-238</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>OR</td>
<td>PUC requires that regulated utility IRPs include analysis of a range of carbon costs</td>
<td>Year 1993</td>
<td>Order 93-695</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>NWPCC</td>
<td>Inclusion of carbon tax scenarios in Fifth Power Plan</td>
<td>May, 2006</td>
<td>NWPCC Fifth Energy Plan</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>MN</td>
<td>Law requires utilities to use PUC established environmental externalities values in resource planning</td>
<td>January 3, 1997</td>
<td>Order in Docket No. E-999/C1-93-583</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>MT</td>
<td>IRP statute includes an "Environmental Externality Adjustment Factor" which includes risk due to greenhouse gases. PSC required Northwestern to account for financial risk of carbon dioxide emissions in 2005 IRP.</td>
<td>August 17, 2004</td>
<td>Written Comments Identifying Concerns with NWE's Compliance with A.R.M. 38.5.8209-8229; Sec. 38.5.8219, A.R.M.</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>UT</td>
<td>Commission directs Pacificorp to consider financial risk associated with potential future regulations, including carbon regulation</td>
<td>June 18, 1992</td>
<td>Docket 90-2035-01, and subsequent IRP reviews</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>MN</td>
<td>Commission directs Xcel to “provide an expansion of CO2 contingency planning to check the extent to which resource mix changes can lower the cost of meeting customer demand under different forms of regulation.”</td>
<td>August 29, 2001</td>
<td>Order in Docket No. RP00-787</td>
</tr>
<tr>
<td>GHG in CON</td>
<td>MN</td>
<td>Law requires that proposed non-renewable generating facilities consider the risk of environmental regulation over expected useful life of the facility</td>
<td>2005</td>
<td>Minn. Stat. §216B.243 subd. 3(12)</td>
</tr>
</tbody>
</table>
States are not just acting individually; there are several examples of innovative regional policy initiatives. To date, there are regional initiatives including Northeastern and Mid-Atlantic states (CT, DE, MD, ME, NH, NJ, NY, and VT), West Coast states (CA, OR, WA), Southwestern states (NM, AZ), and Midwestern states (IL, IA, MI, MN, OH, WI).

The Northeastern and Mid-Atlantic states recently reached agreement on the creation of the Regional Greenhouse Gas Initiative (RGGI); a multi-year cooperative effort to design a regional cap and trade program covering CO₂ emissions from power plants in the region. The RGGI states have agreed to the following:

- Stabilization of CO₂ emissions from power plants at current levels for the period 2009-2015, followed by a 10 percent reduction below current levels by 2019.
- Allocation of a minimum of 25 percent of allowances for consumer benefit and strategic energy purposes.
- Certain offset provisions that increase flexibility to moderate price impacts.
- Development of complimentary energy policies to improve energy efficiency, decrease the use of higher polluting electricity generation and to maintain economic growth.

Electric Industry Actions to Address Greenhouse Gases

Some CEOs in the electric industry have determined that inaction on climate change issues is not good corporate strategy, and individual electric companies have begun to evaluate the risks associated with future greenhouse gas regulation and take steps to reduce greenhouse gas emissions. Their actions represent increasing initiative in the electric industry to address the threat of climate change and manage risk associated with future carbon constraints.

Recently, eight US-based utility companies have joined forces to create the “Clean Energy Group.” This group’s mission is to seek “national four-pollutant legislation that would, among other things… stabilize carbon emissions at 2001 levels by 2013.”

In addition, leaders of electric companies such as Duke and Exelon have vocalized support for mandatory national carbon regulation. These companies urge a mandatory federal policy, stating that climate change is a pressing issue that must be resolved, that voluntary action is not sufficient, and that companies need regulatory certainty to make appropriate decisions. Even companies that do not advocate federal requirements, anticipate their adoption and urge regulatory certainty. Several companies have established greenhouse gas reduction goals for their company.

Several electric utilities and electric generation companies have incorporated specific forecasts of carbon regulation and costs into their long term planning practices. Table ES-4 illustrates the range of carbon cost values, in $/ton CO₂, that are currently being used in the industry for both resource planning and modeling of carbon regulation policies.
Table ES-4. CO₂ Cost Estimates Used in Electricity Resource Plans

<table>
<thead>
<tr>
<th>Company</th>
<th>CO₂ emissions trading assumptions for various years ($2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG&E*</td>
<td>$0-9/ton (start year 2006)</td>
</tr>
<tr>
<td>Avista 2005</td>
<td>$7 and $25/ton (2010)</td>
</tr>
<tr>
<td></td>
<td>$15 and $62/ton (2026 and 2023)</td>
</tr>
<tr>
<td>Portland General Electric*</td>
<td>$0-55/ton (start year 2003)</td>
</tr>
<tr>
<td>Xcel-PSCCo</td>
<td>$9/ton (start year 2010) escalating at 2.5%/year</td>
</tr>
<tr>
<td>Idaho Power*</td>
<td>$0-61/ton (start year 2008)</td>
</tr>
<tr>
<td>Pacificorp 2004</td>
<td>$0-55/ton</td>
</tr>
<tr>
<td>Northwest Energy 2005</td>
<td>$15 and $41/ton</td>
</tr>
<tr>
<td></td>
<td>$0-31/ton after 2016</td>
</tr>
</tbody>
</table>

Synapse Forecast of Carbon Dioxide Allowance Prices

This report presents our current forecast of the most likely costs of compliance with future climate change regulations. In making this forecast we review a range of current estimates from a variety of different sources. We review the results of several analyses of federal policy proposals, and a few analyses of the Kyoto Protocol. We also look briefly at carbon markets in the European Union to demonstrate the levels at which carbon dioxide emissions are valued in an active market.

Figure ES-1 presents CO₂ allowance price forecasts from the range of recent studies that we reviewed. All of the studies here are based on the costs associated with complying with potential CO₂ regulations in the United States. The range of these price forecasts reflects the range of policy initiatives that have been proposed in the United States, as well as the diversity of economic models and methodologies used to estimate their price impacts.

Figure ES-1 superimposes the Synapse long term forecasts of CO₂ allowance prices upon the other forecasts gleaned from the literature. In order to help address the uncertainty involved in forecasting CO₂ prices, we present a “base case” forecast as well as a “low case” and a “high case.” All three forecasts are based on our review of both regulatory trends and economic models, as outlined in this document.
As with any forecast, our forecast is likely to be revised over time as the form and timing of carbon emission regulations come increasingly into focus. It is our judgment that this range represents a reasonable quantification of what is known today about future carbon emissions costs in the United States. As such, it is appropriate for use in long range resource planning purposes until better information or more clarity become available.

Additional Costs Associated with Greenhouse Gases

This report summarizes current policy initiatives and costs associated with greenhouse gas emissions from the electric sector. It is important to note that the greenhouse gas emission reduction requirements contained in federal legislation proposed to date, and even the targets in the Kyoto Protocol, are relatively modest compared with the range of emissions reductions that are anticipated to be necessary for keeping global warming at a manageable level. Further, we do not attempt to calculate the full cost to society (or to electric utilities) associated with anticipated future climate changes. Even if electric utilities comply with some of the most aggressive regulatory requirements underlying our CO2 price forecasts presented above, climate change will continue to occur, albeit at a slower pace, and more stringent emissions reductions will be necessary to avoid dangerous changes to the climate system.

The consensus from the international scientific community clearly indicates that in order to stabilize the concentration of greenhouse gases in the atmosphere and to try to keep
further global warming trends manageable, greenhouse gas emissions will have to be reduced significantly below those limits underlying our CO2 price forecasts. The scientific consensus expressed in the Intergovernmental Panel on Climate Change Report from 2001 is that greenhouse gas emissions would have to decline to a very small fraction of current emissions in order to stabilize greenhouse gas concentrations, and keep global warming in the vicinity of a 2-3 degree centigrade temperature increase. Simply complying with the regulations underlying our CO2 price forecasts does not eliminate the ecological and socio-economic threat created by CO2 emissions – it merely mitigates that threat.

In keeping with these findings, the European Union has adopted an objective of keeping global surface temperature increases to 2 degrees centigrade above pre-industrial levels. The EU Environment Council concluded in 2005 that this goal is likely to require emissions reductions of 15-30% below 1990 levels by 2020, and 60-80% below 1990 levels by 2050.

In other words, incorporating a reasonable CO2 price forecast into electricity resource planning will help address electricity consumer concerns about prudent economic decision-making and direct impacts on future electricity rates, but it does not address all the ecological and socio-economic concerns posed by greenhouse gas emissions. Regulators should consider other policy mechanisms to account for the remaining pervasive impacts associated with greenhouse gas emissions.
1. Introduction

Climate change is not only an “environmental” issue. It is at the confluence of energy and environmental policy, posing challenges to national security, economic prosperity, and national infrastructure. Many states do not require greenhouse gas reductions, nor do we yet have a federal policy requiring greenhouse gas reductions in the United States; thus many policy makers and corporate decision-makers in the electric sector may be tempted to consider climate change policy a hazy future possibility rather than a current factor in resource decisions. However, such a “wait and see” approach is imprudent for resource decisions with horizons of more than a few years. Scientific developments, policy initiatives at the local, state, and federal level, and actions of corporate leaders, all indicate that climate change policy will affect the electric sector – the question is not “whether” but “when,” and in what magnitude.

Attention to global warming and its potential environmental, economic, and social impacts has rapidly increased over the past few years, adding to the pressure for comprehensive climate change policy in the United States. The April 3, 2006 edition of TIME Magazine reports the results of a new survey conducted by TIME, ABC News and Stanford University which reveals that more than 80 percent of Americans believe global warming is occurring, while nearly 90 percent are worried that warming presents a serious problem for future generations. The poll reveals that 75 percent would like the US government, US businesses, and the American people to take further action on global warming in the next year.

In the past several years, climate change has emerged as a significant financial risk for companies. A 2002 report from the investment community identifies climate change as representing a potential multi-billion dollar risk to a variety of US businesses and industries. Addressing climate change presents particular risk and opportunity to the electric sector. Because the electric sector (and associated emissions) continue to grow, and because controlling emissions from large point sources (such as power plants) is easier, and often cheaper, than small disparate sources (like automobiles), the electric sector is likely to be a prime component of future greenhouse gas regulatory scenarios. The report states that “climate change clearly represents a major strategic issue for the electric utilities industry and is of relevance to the long-term evolution of the industry and possibly the survival of individual companies.” Risks to electric companies include the following:

- Cost of reducing greenhouse gas emissions and cost of investment in new, cleaner power production technologies and methods;
- Higher maintenance and repair costs and reliability concerns due to more frequent weather extremes and climatic disturbance; and

• Growing pressure from customers and shareholders to address emissions contributing to climate change.\(^5\)

A subsequent report, “Electric Power, Investors, and Climate Change: A Call to Action,” presents the findings of a diverse group of experts from the power sector, environmental and consumer groups, and the investment community.\(^6\) Participants in this dialogue found that greenhouse gas emissions, including carbon dioxide emissions, will be regulated in the United States; the only remaining issue is when and how. Participants also agreed that regulation of greenhouse gases poses financial risks and opportunities for the electric sector. Managing the uncertain policy environment on climate change is identified as “one of a number of significant environmental challenges facing electric company executives and investors in the next few years as well as the decades to come.”\(^7\) One of the report’s four recommendations is that investors and electric companies come together to quantify and assess the financial risks and opportunities of climate change.

In a 2003 report for the World Wildlife Fund, Innovest Strategic Advisors determined that climate policy is likely to have important consequences for power generation costs, fuel choices, wholesale power prices and the profitability of utilities and other power plant owners.\(^8\) The report found that, even under conservative scenarios, additional costs could exceed 10 percent of 2002 earnings, though there are also significant opportunities. While utilities and non-utility generation owners have many options to deal with the impact of increasing prices on CO\(_2\) emissions, doing nothing is the worst option. The report concludes that a company’s profits could even increase with astute resource decisions (including fuel switching or power plant replacement).

Increased CO\(_2\) emissions from fossil-fired power plants will not only increase environmental damages and challenges to socio-economic systems; on an individual company level they will also increase the costs of complying with future regulations – costs that are likely to be passed on to all customers. Power plants built today can generate electricity for as long as 50 years or more into the future.\(^9\)

As illustrated in the table below, factoring costs associated with future regulations of carbon dioxide has an impact on the costs of resources. Resources with higher CO\(_2\) emissions have a higher CO\(_2\) cost per megawatt-hour than those with lower emissions.

\(^5\) Ibid., pages 45-48.

\(^7\) Ibid., p. 6

\(^8\) Innovest Strategic Value Advisors; “Power Switch: Impacts of Climate Change on the Global Power Sector;” WWF International; November 2003

Table I.1. Comparison of CO₂ costs per MWh for Various Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Scrubbed Coal (Bit)</th>
<th>Scrubbed Coal (Sub)</th>
<th>IGCC</th>
<th>Combined Cycle</th>
<th>Source Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>600</td>
<td>600</td>
<td>550</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>CO₂ (lb/MMBtu)</td>
<td>205.45</td>
<td>212.58</td>
<td>205.45</td>
<td>116.97</td>
<td>1, 3</td>
</tr>
<tr>
<td>Heat Rate (Btu/kWh)</td>
<td>8844</td>
<td>8844</td>
<td>8309</td>
<td>7196</td>
<td></td>
</tr>
<tr>
<td>CO₂ Cost per MWh</td>
<td>$17.83</td>
<td>$18.45</td>
<td>$16.75</td>
<td>$8.26</td>
<td>4</td>
</tr>
</tbody>
</table>

1 - From AEO 2006
2 - IGCC emission rate assumed to be the same as the bituminous scrubbed coal rate
3 - From Synapse's carbon emissions price forecast levelized from 2010-2040 at a 7.32% real discount rate

Many trends in this country show increasing pressure for a federal policy requiring greenhouse gas emissions reductions. Given the strong likelihood of future carbon regulation in the United States, the contributions of the power sector to our nation’s greenhouse gas emissions, and the long lives of power plants, utilities and non-utility generation owners should include carbon cost in all resource evaluation and planning.

The purpose of this report is to identify a reasonable basis for anticipating the likely cost of future mandated carbon emissions reductions for use in long-term resource planning decisions. Section 2 presents information on US carbon emissions. Section 3 describes recent scientific findings on climate change. Section 4 describes international efforts to address the threat of climate change. Section 5 summarizes various initiatives at the state, regional, and corporate level to address climate change. Finally, section 6 summarizes information that can form the basis for forecasts of carbon allowance prices; and provides a reasonable carbon allowance price forecast for use in resource planning and investment decisions in the electric sector.

2. Growing scientific evidence of climate change

In 2001 the Intergovernmental Panel on Climate Change issued its Third Assessment Report. The report, prepared by hundreds of scientists worldwide, concluded that the earth is warming, that most of the warming over the past fifty years is attributable to human activities, and that average surface temperature of the earth is likely to increase.

10 This paper focuses on anticipating the cost of future emission reduction requirements. This paper does not address the determination of an “externality value” associated with greenhouse gas emissions. The externality value would include societal costs beyond those internalized into market costs through regulation. While this report refers to the ecological and socio-economic impacts of climate change, estimation of the external costs of greenhouse gas emissions is beyond the scope of this analysis.

between 1.4 and 5.8 degrees Centigrade during this century, with a wide range of impacts on the natural world and human societies.

Scientists continue to explore the possible impacts associated with temperature increase of different magnitudes. In addition, they are examining a variety of possible scenarios to determine how much the temperature is likely to rise if atmospheric greenhouse gas concentrations are stabilized at certain levels. The consensus in the international scientific community is that greenhouse gas emissions will have to be reduced significantly below current levels. This would correspond to levels much lower than those limits underlying our CO₂ price forecasts. In 2001 the Intergovernmental Panel on Climate Change reported that greenhouse gas emissions would have to decline to a very small fraction of current emissions in order to keep global warming in the vicinity of a 2-3 degree centigrade temperature increase.¹²

Since 2001 the evidence of climate change, and human contribution to climate change, is even more compelling. In June 2005 the National Science Academies from eleven major nations, including the United States, issued a Joint Statement on a Global Response to Climate Change.¹³ Among the conclusions in the statement were that

- Significant global warming is occurring;
- It is likely that most of the warming in recent decades can be attributed to human activities;
- The scientific understanding of climate change is now sufficiently clear to justify nations taking prompt action;
- Action taken now to reduce significantly the build-up of greenhouse gases in the atmosphere will lessen the magnitude and rate of climate change;
- The Joint Academies urge all nations to take prompt action to reduce the causes of climate change, adapt to its impacts and ensure that the issue is included in all relevant national and international strategies.

There is increasing concern in the scientific community that the earth may be more sensitive to global warming than previously thought. Increasing attention is focused on understanding and avoiding dangerous levels of climate change. A 2005 Scientific Symposium on Stabilization of Greenhouse Gases reached the following conclusions:¹⁴

¹³ Joint Science Academies' Statement: Global Response to Climate Change, National Academies of Brazil, Canada, China, France, Germany, India, Italy, Japan, Russia, United Kingdom, and United States, June 7, 2005.

• There is greater clarity and reduced uncertainty about the impacts of climate change across a wide range of systems, sectors and societies. In many cases the risks are more serious than previously thought.

• Surveys of the literature suggest increasing damage if the globe warms about 1 to 3°C above current levels. Serious risk of large scale, irreversible system disruption, such as reversal of the land carbon sink and possible de-stabilisation of the Antarctic ice sheets is more likely above 3°C.

• Many climate impacts, particularly the most damaging ones, will be associated with an increased frequency or intensity of extreme events (such as heat waves, storms, and droughts).

• Different models suggest that delaying action would require greater action later for the same temperature target and that even a delay of 5 years could be significant. If action to reduce emissions is delayed by 20 years, rates of emission reduction may need to be 3 to 7 times greater to meet the same temperature target.

As scientific evidence of climate change continues to emerge, including unusually high temperatures, increased storm intensity, melting of the polar icecaps and glaciers worldwide, coral bleaching, and sea level rise, pressure will continue to mount for concerted governmental action on climate change.15

3. US carbon emissions

The United States contributes more than any other nation, by far, to global greenhouse gas emissions on both a total and a per capita basis. The United States contributes 24 percent of the world CO₂ emissions from fossil fuel consumption, but has only 4.6 percent of the population. According to the International Energy Agency, 80 percent of 2002 global energy-related CO₂ emissions were emitted by 22 countries – from all world regions, 12 of which are OECD countries. These 22 countries also produced 80 percent of the world’s 2002 economic output (GDP) and represented 78 percent of the world’s Total Primary Energy Supply.16 Figure 3.1 shows the top twenty carbon dioxide emitters in the world.

Figure 3.1. Top Worldwide Emitters of Carbon Dioxide in 2003
Source: Data from EIA Table H.1co2 World Carbon Dioxide Emissions from the Consumption and Flaring of Fossil Fuels, 1980-2003, July 11, 2005

Emissions in this country in 2004 were roughly divided among three sectors: transportation (1,934 million metric tons CO₂), electric generation (2,299 million metric tons CO₂), and other (which includes commercial and industrial heat and process applications – 1,673 million metric tons CO₂). These emissions, largely attributable to the burning of fossil fuels, came from combustion of oil (44%), coal (35.4%), and natural gas (20.4%). Figure 3.2 shows emissions from the different sectors, with the electric sector broken out by fuel source.
Recent analysis has shown that in 2004, power plant CO₂ emissions were 27 percent higher than they were in 1990. Recent analysis has shown that in 2004, power plant CO₂ emissions were 27 percent higher than they were in 1990. 17 US greenhouse gas emissions per unit of Gross Domestic Product (GDP) fell from 677 metric tons per million 2000 constant dollars of GDP (MTCO₂e/$Million GDP) in 2003 to 662 MTCO₂e /$Million GDP in 2004, a decline of 2.1 percent. 18 However, while the carbon intensity of the US economy (carbon emissions per unit of GDP) fell by 12 percent between 1991 and 2002, the carbon intensity of the electric power sector held steady. 19 This is because the carbon efficiency gains from the construction of efficient and relatively clean new natural gas plants have been offset by increasing reliance on existing coal plants. Since federal acid rain legislation was enacted in 1990, the average rate at which existing coal plants are operated increased from 61 percent to 72 percent. Power plant CO₂ emissions are concentrated in states along the Ohio River Valley and in the South. Five states – Indiana, Ohio, Pennsylvania, Texas, and West Virginia – are the source of 30 percent of the electric power industry's NOₓ and CO₂ emissions, and nearly 40 percent of its SO₂ and mercury emissions.

4. Governments worldwide have agreed to respond to climate change by reducing greenhouse gas emissions

The prospect of global warming and associated climate change has spurred one of the most comprehensive international treaties on environmental issues. The 1992 United Nations Framework Convention on Climate Change has almost worldwide membership; and, as such, is one of the most widely supported of all international environmental agreements. President George H.W. Bush signed the Convention in 1992, and it was ratified by Congress in the same year. In so doing, the United States joined other nations in agreeing that “The Parties should protect the climate system for the benefit of present and future generations of humankind, on the basis of equity and in accordance with their common but differentiated responsibilities and respective capabilities.”

Industrialized nations, such as the United States, and Economies in Transition, known as Annex I countries in the UNFCCC, agree to adopt climate change policies to reduce their greenhouse gas emissions. Industrialized countries that were members of the Organization for Economic Cooperation and Development (OECD) in 1992, called Annex II countries, have the further obligation to assist developing countries with emissions mitigation and climate change adaptation.

Following this historic agreement, most Parties to the UNFCCC adopted the Kyoto Protocol on December 11, 1997. The Kyoto Protocol supplements and strengthens the Convention; the Convention continues as the main focus for intergovernmental action to combat climate change. The Protocol establishes legally-binding targets to limit or reduce greenhouse gas emissions. The Protocol also includes various mechanisms to cut emissions reduction costs. Specific rules have been developed on emissions sinks, joint implementation projects, and clean development mechanisms. The Protocol envisions a long-term process of five-year commitment periods. Negotiations on targets for the second commitment period (2013-2017) are beginning.

The Kyoto targets are shown below, in Table 4.1. Only Parties to the Convention that have also become Parties to the Protocol (i.e. by ratifying, accepting, approving, or acceding to it), are bound by the Protocol’s commitments, following its entry into force in 2005.

20 For comprehensive information on the UNFCCC and the Kyoto Protocol, see UNFCCC, “Caring for Climate: a guide to the climate change convention and the Kyoto Protocol,” issued by the Climate Change Secretariat (UNFCCC) Bonn, Germany. 2003. This and other publications are available at the UNFCCC’s website: http:// unfccc.int/.

21 The First World Climate Conference was held in 1979. In 1988, the World Meteorological Society and the United Nations Environment Programme created the Intergovernmental Panel on Climate Change to evaluate scientific information on climate change. Subsequently, in 1992 countries around the world, including the United States, adopted the United Nations Framework Convention on Climate Change.

23 One of obligations of the United States and other industrialized nations is to a National Report describing actions it is taking to implement the Convention.

24 Greenhouse gases covered by the Protocol are CO₂, CH₄, N₂O, HFCs, PFCs and SF₆.
The individual targets for Annex I Parties add up to a total cut in greenhouse-gas emissions of at least 5 percent from 1990 levels in the commitment period 2008-2012.

Only a few industrialized countries have not signed the Kyoto Protocol; these countries include the United States, Australia, and Monaco. Of these, the United States is by far the largest emitter with 36.1 percent of Annex I emissions in 1990; Australia and Monaco were responsible for 2.1 percent and less than 0.1 percent of Annex I emissions, respectively. The United States did not sign the Kyoto protocol, stating concerns over impacts on the US economy and absence of binding emissions targets for countries such as India and China. Many developing countries, including India, China and Brazil have signed the Protocol, but do not yet have emission reduction targets.

In December 2005, the Parties agreed to final adoption of a Kyoto "rulebook" and a two-track approach to consider next steps. These next steps will include negotiation of new binding commitments for Kyoto's developed country parties, and, a nonbinding "dialogue on long-term cooperative action" under the Framework Convention.

Table 4.1. Emission Reduction Targets Under the Kyoto Protocol

<table>
<thead>
<tr>
<th>Country</th>
<th>Target: change in emissions from 1990** levels by 2008/2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU-15*, Bulgaria, Czech Republic, Estonia, Latvia, Liechtenstein, Lithuania, Monaco, Romania, Slovakia, Slovenia, Switzerland</td>
<td>-8%</td>
</tr>
<tr>
<td>United States***</td>
<td>-7%</td>
</tr>
<tr>
<td>Canada, Hungary, Japan, Poland</td>
<td>-6%</td>
</tr>
<tr>
<td>Croatia</td>
<td>-5%</td>
</tr>
<tr>
<td>New Zealand, Russian Federation, Ukraine</td>
<td>0</td>
</tr>
<tr>
<td>Norway</td>
<td>+1%</td>
</tr>
<tr>
<td>Australia***</td>
<td>+8%</td>
</tr>
<tr>
<td>Iceland</td>
<td>+10%</td>
</tr>
</tbody>
</table>

* The EU’s 15 member States will redistribute their targets among themselves, as allowed under the Protocol. The EU has already reached agreement on how its targets will be redistributed.

** Some Economies In Transition have a baseline other than 1990.

*** The United States and Australia have indicated their intention not to ratify the Kyoto Protocol.

As the largest single emitter of greenhouse gas emissions, and as one of the only industrialized nations not to sign the Kyoto Protocol, the United States is under significant international scrutiny; and pressure is building for the United States to take more initiative in addressing the emerging problem of climate change. In 2005 climate change was a priority at the G8 Summit in Gleneagles, with the G8 leaders agreeing to “act with resolve and urgency now” on the issue of climate change.27 The leaders

25 Entry into force required 55 Parties to the Convention to ratify the Protocol, including Annex I Parties accounting for 55 percent of that group’s carbon dioxide emissions in 1990. This threshold was reached when Russia ratified the Protocol in November 2004. The Protocol entered into force February 16, 2005.

26 Background information at: http://unfccc.int/essential_background/kyoto_protocol/items/3145.php

reached agreement that greenhouse gas emissions should slow, peak and reverse, and that the G8 nations must make “substantial cuts” in greenhouse gas emissions. They also reaffirmed their commitment to the UNFCCC and its objective of stabilizing greenhouse gas concentrations in the atmosphere at a level that prevents dangerous anthropogenic interference with the climate system.

The EU has already adopted goals for emissions reductions beyond the Kyoto Protocol. The EU has stated its commitment to limiting global surface temperature increases to 2 degrees centigrade above pre-industrial levels. The EU Environment Council concluded in 2005 that to meet this objective in an equitable manner, developed countries should reduce emissions 15-30% below 1990 levels by 2020, and 60-80% below 1990 levels by 2050. A 2005 report from the European Environment Agency concluded that a 2 degree centigrade temperature increase was likely to require that global emissions increases be limited at 35% above 1990 levels by 2020, with a reduction by 2050 of between 15 and 50% below 1990 levels. The EU has committed to emission reductions of 20-30% below 1990 levels by 2020, and reduction targets for 2050 are still under discussion.

5. Legislators, state governmental agencies, shareholders, and corporations are working to reduce greenhouse gas emissions from the United States

There is currently no mandatory federal program requiring greenhouse gas emission reductions. Nevertheless, various federal legislative proposals are under consideration, and President Bush has acknowledged that humans are contributing to global warming. Meanwhile, state and municipal governments (individually and in cooperation), are leading the development and design of climate policy in the United States. Simultaneously, companies in the electric sector, acting on their own initiative or in compliance with state requirements, are beginning to incorporate future climate change policy as a factor in resource planning and investment decisions.

at:
http://www.g8.gov.uk/servlet/Front?pagename=OpenMarket/Xcelerate/ShowPage&c=Page&cid=1094235520309
http://ue.eu.int/uedocs/cmsUpload/st07242.en05.pdf
5.1 Federal initiatives

With ratification of the United Nations Framework Convention on Climate Change in 1992, the United States agreed to a goal of “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”

To date, the Federal Government in the United States has not required greenhouse gas emission reductions, and the question of what constitutes a dangerous level of human interference with the climate system remains unresolved. However, legislative initiatives for a mandatory market-based greenhouse gas cap and trade program are under consideration.

To date, the Bush Administration has relied on voluntary action. In July 2005, President Bush changed his public position on causation, acknowledging that the earth is warming and that human actions are contributing to global warming.

That summer, the Administration launched a new climate change pact between the United States and five Asian and Pacific nations aimed at stimulating technology development and inducing private investments in low-carbon and carbon-free technologies. The Asia-Pacific Partnership on Clean Development and Climate – signed by Australia, China, India, Japan, South Korea and the United States – brings some of the largest greenhouse gas emitters together; however its reliance on voluntary measures reduces its effectiveness.

The legislative branch has been more active in exploring mandatory greenhouse gas reduction policies. In June 2005, the Senate passed a sense of the Senate resolution recognizing the need to enact a US cap and trade program to slow, stop and reverse the growth of greenhouse gases.

31 The UNFCC was signed by President George H. Bush in 1992 and ratified by the Senate in the same year.
This Resolution built upon previous areas of agreement in the Senate, and provides a foundation for future agreement on a cap and trade program. On May 10, 2006 the House Appropriations Committee adopted very similar language supporting a mandatory cap on greenhouse gas emissions in a non-binding amendment to a 2007 spending bill.\(^\text{34}\)

Several mandatory emissions reduction proposals have been introduced in Congress. These proposals establish emission trajectories below the projected business-as-usual emission trajectories, and they generally rely on market-based mechanisms (such as cap and trade programs) for achieving the targets. The proposals also include various provisions to spur technology innovation, as well as details pertaining to offsets, allowance allocation, restrictions on allowance prices and other issues. Through their consideration of these proposals, legislators are increasingly educated on the complex details of different policy approaches, and they are laying the groundwork for a national mandatory program. Federal proposals that would require greenhouse gas emission reductions are summarized in Table 5.1, below.

\(^{34}\) “House appropriators OK resolution on need to cap emissions,” Greenwire, May 10, 2005.
<table>
<thead>
<tr>
<th>Proposed National Policy</th>
<th>Title or Description</th>
<th>Year Proposed</th>
<th>Emission Targets</th>
<th>Sectors Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCain Lieberman SA 2028</td>
<td>Climate Stewardship Act</td>
<td>2003</td>
<td>Cap at 2000 levels</td>
<td>Economy-wide, large emitting sources</td>
</tr>
<tr>
<td>Sen. Feinstein</td>
<td>Strong Economy and Climate Protection Act</td>
<td>2006</td>
<td>Stabilize emissions through 2010; 0.5% cut per year from 2011-15; 1% cut per year from 2016-2020. Total reduction is 7.25% below current levels.</td>
<td>Economy-wide, large emitting sources</td>
</tr>
<tr>
<td>Jeffords S. 150</td>
<td>Multi-pollutant legislation</td>
<td>2005</td>
<td>2.050 billion tons beginning 2010</td>
<td>Existing and new fossil-fuel fired electric generating plants >15 MW</td>
</tr>
<tr>
<td>Carper S. 843</td>
<td>Clean Air Planning Act</td>
<td>2005</td>
<td>2006 levels (2.655 billion tons CO2) starting in 2009, 2001 levels (2.454 billion tons CO2) starting in 2013.</td>
<td>Existing and new fossil-fuel fired, nuclear, and renewable electric generating plants >25 MW</td>
</tr>
</tbody>
</table>

Landmark legislation that would regulate carbon, the Climate Stewardship Act (S.139), was introduced by Senators McCain and Lieberman in 2003, and received 43 votes in the Senate. A companion bill was introduced in the House by Congressmen Olver and Gilchrest. As initially proposed, the bill created an economy-wide two-step cap on greenhouse gas emissions. The bill was reintroduced in the 109th Congress on February 10, 2005; the revised Climate Stewardship Act, SA 2028, would create a national cap and
trade program to reduce CO₂ to year 2000 emission levels over the period 2010 to 2015. Other legislative initiatives on climate change were also under consideration in the spring of 2005, including a proposal by Senator Jeffords (D-VT) to cap greenhouse gas emissions from the electric sector (S. 150), and an electric sector four-pollutant bill from Senator Carper (D-DE) (S. 843).

In 2006, the Senate appears to be moving beyond the question of whether to regulate greenhouse gas emissions, to working out the details of how to regulate greenhouse gas emissions. Senators Domenici (R-NM) and Bingaman (D-NM) are working on bi-partisan legislation based on the recommendations of the National Commission on Energy Policy (NCEP). The NCEP – a bipartisan group of energy experts from industry, government, labor, academia, and environmental and consumer groups – released a consensus strategy in December 2004 to address major long-term US energy challenges. Their report recommends a mandatory economy-wide tradable permits program to limit GHG. Costs would be capped at $7/metric ton of CO₂ equivalent in 2010 with the cap rising 5 percent annually.35 The Senators are investigating the details of creating a mandatory economy-wide cap and trade system based on mandatory reductions in greenhouse gas intensity (measured in tons of emissions per dollar of GDP). In the spring of 2006, the Senate Energy and Natural Resources Committee held hearings to develop the details of a proposal.36 During these hearings many companies in the electric power sector, such as Exelon, Duke Energy, and PNM Resources, expressed support for a mandatory national greenhouse gas cap and trade program.37

Two other proposals in early 2006 have added to the detail of the increasingly lively discussion of federal climate change strategies. Senator Feinstein (D-CA) issued a proposal for an economy-wide cap and trade system in order to further spur debate on the issue.38 Senator Feinstein’s proposal would cap emissions and seek reductions at levels largely consistent with the original McCain-Lieberman proposal. The most recent proposal to be added to the discussion is one by Reps. Tom Udall (D-NM) and Tom Petri (R-WI). The proposal includes a market-based trading system with an emissions cap to be established by the EPA about three years after the bill becomes law. The bill includes provisions to spur new research and development by setting aside 25 percent of the trading system's allocations for a new Energy Department technology program, and 10 percent of the plan's emission allowances to the State Department for spending on zero-carbon and low-carbon projects in developing nations. The bill would regulate greenhouse gas emissions at "upstream" sources such as coal mines and oil imports. Also,

37 All of the comments submitted to the Senate Energy and Natural Resources Committee are available at: http://energy.senate.gov/public/index.cfm?FuseAction=IssueItems.View&IssueItem_ID=38
it would establish a "safety valve" initially limiting the price of a ton of carbon dioxide emission to $25.39

Figure 5.1 illustrates the anticipated emissions trajectories from the economy-wide proposals - though the most recent proposal in the House is not included due to its lack of a specified emissions cap.

![Figure 5.1. Emission Trajectories of Proposed Federal Legislation](image)

Figure 5.1. Emission Trajectories of Proposed Federal Legislation

The emissions trajectories contained in the proposed federal legislation are in fact quite modest compared with emissions reductions that are anticipated to be necessary to achieve stabilization of atmospheric concentrations of greenhouse gases at levels that correspond to temperature increase of about 2 degrees centigrade. Figure 5.2 compares various emission reduction trajectories and goals in relation to a 1990 baseline. US federal proposals, and even Kyoto Protocol reduction targets, are small compared with the current EU emissions reduction target for 2020, and emissions reductions that will ultimately be necessary to cope with global warming.

Figure 5.2 Comparison of Emission Reduction Goals

Figure compares emission reduction goals with 1990 as the baseline. Kyoto Protocol target for the United States would have been 7% below 1990 emissions levels. EU target is 20-30% below 1990 emissions levels. Stabilization target represents a reduction of 80% below 1990 levels. While there is no international agreement on the level at which emissions concentrations should be stabilized, and the emissions trajectory to achieve a stabilization target is not determined, reductions of 80% below 1990 levels indicates the magnitude of emissions reductions that are currently anticipated to be necessary.

As illustrated in the above figure, long term emission reduction goals are likely to be much more aggressive than those contained in federal policy proposals to date. Thus it is likely that cost projections will increase as targets become more stringent.

While efforts continue at the federal level, some individual states and regions are adopting their own greenhouse gas mitigation policies. Many corporations are also taking steps, on their own initiative, pursuant to state requirements, or under pressure from shareholder resolutions, in anticipation of mandates to reduce emissions of greenhouse gases. These efforts are described below.

5.2 State and regional policies

Many states across the country have not waited for federal policies and are developing and implementing climate change-related policies that have a direct bearing on resource choices in the electric sector. States, acting individually, and through regional coordination, have been the leaders on climate change policies in the United States. Generally, policies that individual states adopt fall into the following categories: (1) Direct policies that require specific emission reductions from electric generation sources; and (2) Indirect policies that affect electric sector resource mix such as through
promoting low-emission electric sources; (3) Legal proceedings; or (4) Voluntary programs including educational efforts and energy planning.

Table 5.2. Summary of Individual State Climate Change Policies

<table>
<thead>
<tr>
<th>Type of Policy</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>• Power plant emission restrictions (e.g. cap or emission rate)</td>
<td>• MA, NH</td>
</tr>
<tr>
<td>• New plant emission restrictions</td>
<td>• OR, WA</td>
</tr>
<tr>
<td>• State GHG reduction targets</td>
<td>• CT, NJ, ME, MA, CA, NM, NY, OR, WA</td>
</tr>
<tr>
<td>• Fuel/generation efficiency</td>
<td>• CA vehicle emissions standards to be adopted by CT, NY, ME, MA, NJ, OR, PA, RI, VT, WA</td>
</tr>
<tr>
<td>Indirect (clean energy)</td>
<td></td>
</tr>
<tr>
<td>• Load-based GHG cap</td>
<td>• CA</td>
</tr>
<tr>
<td>• GHG in resource planning</td>
<td>• CA, WA, OR, MT, KY</td>
</tr>
<tr>
<td>• Renewable portfolio standards</td>
<td>• 22 states and D.C.</td>
</tr>
<tr>
<td>• Energy efficiency/renewable charges and funding; energy efficiency programs</td>
<td>• More than half the states</td>
</tr>
<tr>
<td>• Net metering, tax incentives</td>
<td>• 41 states</td>
</tr>
<tr>
<td>Lawsuits</td>
<td></td>
</tr>
<tr>
<td>• States, environmental groups sue EPA to determine whether greenhouse gases can be regulated under the Clean Air Act</td>
<td>• States include CA, CT, ME, MA, NM, NY, OR, RI, VT, and WI</td>
</tr>
<tr>
<td>• States sue individual companies to reduce GHG emissions</td>
<td>• NY, CT, CA, IA, NJ, RI, VT, WI</td>
</tr>
<tr>
<td>Climate change action plans</td>
<td></td>
</tr>
<tr>
<td>• 28 states, with NC and AZ in progress</td>
<td></td>
</tr>
</tbody>
</table>

Several states have adopted direct policies that require specific emission reductions from specific electric sources. Some states have capped carbon dioxide emissions from sources in the state (through rulemaking or legislation), and some restrict emissions from new sources through offset requirements. The California Public Utilities Commission recently stated that it will develop a load-based cap on greenhouse gas emissions in the electric sector. Table 5.3 summarizes these direct policies.
Table 5.3. State Policies Requiring GHG Emission Reductions From Power Plants

<table>
<thead>
<tr>
<th>Program type</th>
<th>State</th>
<th>Description</th>
<th>Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions limit</td>
<td>MA</td>
<td>Department of Environmental Protection decision capping GHG emissions, requiring 10 percent reduction from historic baseline</td>
<td>April 1, 2001</td>
<td>310 C.M.R. 7.29</td>
</tr>
<tr>
<td>Emissions limit</td>
<td>NH</td>
<td>NH Clean Power Act</td>
<td>May 1, 2002</td>
<td>HB 284</td>
</tr>
<tr>
<td>Emissions limit on new plants</td>
<td>OR</td>
<td>Standard for CO₂ emissions from new electricity generating facilities (base-load gas, and non-base load generation)</td>
<td>Updated September 2003</td>
<td>OR Admin. Rules, Ch. 345, Div 24</td>
</tr>
<tr>
<td>Emissions limit on new plants</td>
<td>WA</td>
<td>Law requiring new power plants to mitigate emissions or pay for a portion of emissions</td>
<td>March 1, 2004</td>
<td>RCW 80.70.020</td>
</tr>
<tr>
<td>Load-based emissions limit</td>
<td>CA</td>
<td>Public Utilities Commission decision stating intent to establish load-based cap on GHG emissions</td>
<td>February 17, 2006</td>
<td>D. 06-02-032 in docket R. 04-04-003</td>
</tr>
</tbody>
</table>

Several states require that integrated utilities or default service suppliers evaluate costs or risks associated with greenhouse gas emissions in long-range planning or resource procurement. Some of the states such as California require that companies use a specific value, while other states require generally that companies consider the risk of future regulation in their planning process. Table 5.4 summarizes state requirements for consideration of greenhouse gas emissions in the planning process.
Table 5.4. Requirements for Consideration of GHG Emissions in Electric Resource Decisions

<table>
<thead>
<tr>
<th>Program type</th>
<th>State</th>
<th>Description</th>
<th>Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG value in resource planning</td>
<td>CA</td>
<td>PUC requires that regulated utility IRPs include carbon adder of $8/ton CO₂, escalating at 5% per year.</td>
<td>April 1, 2005</td>
<td>CPUC Decision 05-04-024</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>WA</td>
<td>Law requiring that cost of risks associated with carbon emissions be included in Integrated Resource Planning for electric and gas utilities</td>
<td>January, 2006</td>
<td>WAC 480-100-238 and 480-90-238</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>OR</td>
<td>PUC requires that regulated utility IRPs include analysis of a range of carbon costs</td>
<td>Year 1993</td>
<td>Order 93-695</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>NWPC</td>
<td>inclusion of carbon tax scenarios in Fifth Power Plan</td>
<td>May, 2006</td>
<td>NWPC Fifth Energy Plan</td>
</tr>
<tr>
<td>GHG value in resource planning</td>
<td>MN</td>
<td>Law requires utilities to use PUC established environmental externalities values in resource planning</td>
<td>January 3, 1997</td>
<td>Order in Docket No. E-999/CI-93-583</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>MT</td>
<td>IRP statute includes an "Environmental Externality Adjustment Factor" which includes risk due to greenhouse gases. PSC required Northwestern to account for financial risk of carbon dioxide emissions in 2005 IRP.</td>
<td>August 17, 2004</td>
<td>Written Comments Identifying Concerns with NWE's Compliance with A.R.M. 38.5.8209-8229; Sec. 38.5.8219, A.R.M.</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>UT</td>
<td>Commission directs Pacificorp to consider financial risk associated with potential future regulations, including carbon regulation</td>
<td>June 18, 1992</td>
<td>Docket 90-2035-01, and subsequent IRP reviews</td>
</tr>
<tr>
<td>GHG in resource planning</td>
<td>MN</td>
<td>Commission directs Xcel to “provide an expansion of CO₂ contingency planning to check the extent to which resource mix changes can lower the cost of meeting customer demand under different forms of regulation.”</td>
<td>August 29, 2001</td>
<td>Order in Docket No. RP00-787</td>
</tr>
<tr>
<td>GHG in CON</td>
<td>MN</td>
<td>Law requires that proposed non-renewable generating facilities consider the risk of environmental regulation over expected useful life of the facility</td>
<td>2005</td>
<td>Minn. Stat. §216B.243 subd. 3(12)</td>
</tr>
</tbody>
</table>
In June 2005 both California and New Mexico adopted ambitious greenhouse gas emission reduction targets that are consistent with current scientific understanding of the emissions reductions that are likely to be necessary to avoid dangerous human interference with the climate system. In California, an Executive Order directs the state to reduce GHG emissions to 2000 levels by 2010, 1990 levels by 2020, and 80 percent below 1990 levels by 2050. In New Mexico, an Executive Order established statewide goals to reduce New Mexico’s total greenhouse gas emissions to 2000 levels by 2012, 10 percent below those levels by 2020, and 75 percent below 2000 levels by 2050. In September 2005 New Mexico also adopted a legally binding agreement to lower emissions through the Chicago Climate Exchange. More broadly, to date at least twenty-eight states have developed Climate Action Plans that include statewide plans for addressing climate change issues. Arizona and North Carolina are in the process of developing such plans.

States are also pursuing other approaches. For example, in November 2005, the governor of Pennsylvania announced a new program to modernize energy infrastructure through replacement of traditional coal technology with advanced coal gasification technology. Energy Deployment for a Growing Economy allows coal plant owners a limited time to continue to operate without updated emissions technology as long as they make a commitment by 2007 to replace older plants with IGCC by 2013.40 In September of 2005 the North Carolina legislature formed a commission to study and make recommendations on voluntary GHG emissions controls. In October 2005, New Jersey designated carbon dioxide as a pollutant, a necessary step for the state’s participation in the Regional Greenhouse Gas Initiative (described below).41

Finally, states are pursuing legal proceedings addressing greenhouse gas emissions. Many states have participated in one or several legal proceedings to seek greenhouse gas emission reductions from some of the largest polluting power plants. Some states have also sought a legal determination regarding regulation of greenhouse gases under the Clean Air Act. The most recent case involves 10 states and two cities suing the Environmental Protection Agency to determine whether greenhouse gases can be regulated under the Clean Air Act.42 The states argue that EPA’s recent emissions standards for new sources should include carbon dioxide since carbon dioxide, as a major contributor to global warming, harms public health and welfare, and thus falls within the scope of the Clean Air Act.

While much of the focus to date has been on the electric sector, states are also beginning to address greenhouse gas emissions in other sectors. For example, California has

42 The states are CA, CT, ME, MA, NM, NY, OR, RI, VT, and WI. New York City and Washington D.C., as well as the Natural Resources Defense Council, the Sierra Club, and Environmental Defense. New York State Attorney General Eliot Spitzer, “States Sue EPA for Violating Clean Air Act and Failing to Act on Global Warming,” press release, April 27, 2006.
adopted emissions standards for vehicles that would restrict carbon dioxide emissions. Ten other states have decided to adopt California’s vehicle emissions standards.

States are not just acting individually; there are several examples of innovative regional policy initiatives that range from agreeing to coordinate information (e.g. Southwest governors, and Midwestern legislators) to development of a regional cap and trade program through the Regional Greenhouse Gas Initiative in the Northeast. These regional activities are summarized in Table 5.5, below.

Table 5.5. Regional Climate Change Policy Initiatives

<table>
<thead>
<tr>
<th>Program type</th>
<th>State</th>
<th>Description</th>
<th>Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional GHG reduction Plan</td>
<td>CT, DE, MD, ME, NH, NJ, NY, VT</td>
<td>Regional Greenhouse Gas Initiative capping GHG emissions in the region and establishing trading program</td>
<td>MOU December 20, 2005, Model Rule February 2006</td>
<td>Memorandum of Understanding and Model Rule</td>
</tr>
<tr>
<td>Regional GHG reduction Plan</td>
<td>CA, OR, WA</td>
<td>West Coast Governors’ Climate Change Initiative</td>
<td>September 2003, Staff report November 2004</td>
<td>Staff Report to the Governors</td>
</tr>
<tr>
<td>Regional GHG coordination</td>
<td>NM, AZ</td>
<td>Southwest Climate Change Initiative</td>
<td>February 28, 2006</td>
<td>Press release</td>
</tr>
<tr>
<td>Regional legislative coordination</td>
<td>IL, IA, MI, MN, OH, WI</td>
<td>Legislators from multiple states agree to coordinate regional initiatives limiting global warming pollution</td>
<td>February 7, 2006</td>
<td>Press release</td>
</tr>
<tr>
<td>Regional Climate Change Action Plan</td>
<td>New England, Eastern Canada</td>
<td>New England Governors and Eastern Canadian Premiers agreement for comprehensive regional Climate Change Action Plan. Targets are to reduce regional GHG emissions to 1990 levels by 2010, at least 10 percent below 1990 levels by 2020, and long-term reduction consistent with elimination of dangerous threat to climate (75-85 percent below current levels).</td>
<td>August, 2001</td>
<td>Memorandum of Understanding</td>
</tr>
</tbody>
</table>

Seven Northeastern and Mid-Atlantic states (CT, DE, ME, NH, NJ, NY, and VT) reached agreement in December 2005 on the creation of a regional greenhouse gas cap and trade program. The Regional Greenhouse Gas Initiative (RGGI) is a multi-year cooperative effort to design a regional cap and trade program initially covering CO₂ emissions from power plants in the region. Massachusetts and Rhode Island have actively participated in RGGI, but have not yet signed the agreement. Collectively, these states and Massachusetts and Rhode Island (which participated in RGGI negotiations) contribute 9.3 percent of total US CO₂ emissions and together rank as the fifth highest CO₂ emitter.
in the world. Maryland passed a law in April 2006 requiring participation in RGGI. \footnote{Maryland Senate Bill 154 *Healthy Air Act*, signed April 6, 2006.}

Pennsylvania, the District of Columbia, the Eastern Canadian Provinces, and New Brunswick are official “observers” in the RGGI process. \footnote{Information on this effort is available at \url{www.rggi.org}}

The RGGI states have agreed to the following:

- Stabilization of CO$_2$ emissions from power plants at current levels for the period 2009-2015, followed by a 10 percent reduction below current levels by 2019.
- Allocation of a minimum of 25 percent of allowances for consumer benefit and strategic energy purposes
- Certain offset provisions that increase flexibility to moderate price impacts
- Development of complimentary energy policies to improve energy efficiency, decrease the use of higher polluting electricity generation and to maintain economic growth. \footnote{The MOU states “Each state will maintain and, where feasible, expand energy policies to decrease the use of less efficient or relatively higher polluting generation while maintaining economic growth. These may include such measures as: end-use efficiency programs, demand response programs, distributed generation policies, electricity rate designs, appliance efficiency standards and building codes. Also, each state will maintain and, where feasible, expand programs that encourage development of non-carbon emitting electric generation and related technologies.” RGGI MOU, Section 7, December 20, 2005.}

The states released a Model Rule in February 2006. The states must next consider adoption of rules consistent with the Model Rule through their regular legislative and regulatory policies and procedures.

Many cities and towns are also adopting climate change policies. Over 150 cities in the United States have adopted plans and initiatives to reduce emissions of greenhouse gases, setting emissions reduction targets and taking measures within municipal government operations. Climate change was a major issue at the annual US Conference of Mayors convention in June 2005, when the Conference voted unanimously to support a climate protection agreement, which commits cities to the goal of reducing emissions seven percent below 1990 levels by 2012. \footnote{the \url{US Mayors Climate Protection Agreement}, 2005. Information available at \url{http://www.ci.seattle.wa.us/mayor/climate}}

World-wide, the Cities for Climate Protection Campaign (CCP), begun in 1993, is a global campaign to reduce emissions that cause climate change and air pollution. By 1999, the campaign had engaged more than 350 local governments in this effort, who jointly accounted for approximately seven percent of global greenhouse gas emissions. \footnote{Information on the Cities for Climate Protection Campaign, including links to over 150 cities that have adopted greenhouse gas reduction measures, is available at \url{http://www.iclei.org/projserv.htm#ccp}}

All of these recent activities contribute to growing pressure within the United States to adopt regulations at a national level to reduce the emissions of greenhouse gases, particularly CO$_2$. This pressure is likely to increase over time as climate change issues and measures for addressing them become better...
understood by the scientific community, by the public, the private sector, and particularly by elected officials.

5.3 Investor and corporate action

Several electric companies and other corporate leaders have supported the concept of a mandatory greenhouse gas emissions program in the United States. For example, in April 2006, the Chairman of Duke Energy, Paul Anderson, stated:

From a business perspective, the need for mandatory federal policy in the United States to manage greenhouse gases is both urgent and real. In my view, voluntary actions will not get us where we need to be. Until business leaders know what the rules will be – which actions will be penalized and which will be rewarded – we will be unable to take the significant actions the issue requires.48

Similarly, in comments to the Senate Energy and Natural Resources Committee, the vice president of Exelon reiterated the company’s support for a federal mandatory carbon policy, stating that “It is critical that we start now. We need the economic and regulatory certainty to invest in a low-carbon energy future.”49 Corporate leaders from other sectors are also increasingly recognizing climate change as a significant policy issue that will affect the economy and individual corporations. For example, leaders from Wal-Mart, GE, Shell, and BP, have all taken public positions supporting the development of mandatory climate change policies.50

In a 2004 national survey of electric generating companies in the United States, conducted by PA Consulting Group, about half the respondents believe that Congress will enact mandatory limits on CO2 emissions within five years, while nearly 60 percent anticipate mandatory limits within the next 10 years. Respondents represented companies that generate roughly 30 percent of US electricity.51 Similarly, in a 2005 survey of the North American electricity industry, 93% of respondents anticipate increased pressure to take action on global climate change.52

50 See, e.g., Raymond Bracy, V.P. for Corporate Affairs, Wal-Mart, Comments to Senate Energy and Natural Resources Committee hearings on the design of CO2 cap-and-trade system, April 4, 2006; David Slump, GE Energy, General Manager, Global Marketing, Comments to Senate Energy and Natural Resources Committee hearings on the design of CO2 cap-and-trade system, April 4, 2006; John Browne, CEO of BP, “Beyond Kyoto,” Foreign Affairs, July/August 2004; Shell company website at www.shell.com.

52 GF Energy, “GF Energy 2005 Electricity Outlook” January 2005. However, it is interesting to note that climate ranked 11th among issues deemed important to individual companies.
Some investors and corporate leaders have taken steps to manage risk associated with climate change and carbon policy. Investors are gradually becoming aware of the financial risks associated with climate change, and there is a growing body of literature regarding the financial risks to electric companies and others associated with climate change. Many investors are now demanding that companies take seriously the risks associated with carbon emissions. Shareholders have filed a record number of global warming resolutions for 2005 for oil and gas companies, electric power producers, real estate firms, manufacturers, financial institutions, and auto makers. The resolutions request financial risk disclosure and plans to reduce greenhouse gas emissions. Four electric utilities – AEP, Cinergy, TXU and Southern – have all released reports on climate risk following shareholder requests in 2004. In February 2006, four more US electric power companies in Missouri and Wisconsin also agreed to prepare climate risk reports.

State and city treasurers, labor pension fund officials, and foundation leaders have formed the Investor Network on Climate Risk (INCR) which now includes investors controlling $3 trillion in assets. In 2005, the INCR issued “A New Call for Action: Managing Climate Risk and Capturing the Opportunities,” which discusses efforts to address climate risk since 2003 and identifies areas for further action. It urges institutional investors, fund managers, companies, and government policymakers to increase their oversight and scrutiny of the investment implications of climate change. A 2004 report cites analysis indicating that carbon constraints affect market value – with modest greenhouse gas controls reducing the market capitalization of many coal-dependent US electric utilities by 5 to 10 percent, while a more stringent reduction target could reduce their market value 10 to 35 percent. The report recommends, as one of the steps that company CEOs should pursue, integrating climate policy in strategic business planning to maximize opportunities and minimize risks.

Institutional investors have formed The Carbon Disclosure Project (CDP), which is a forum for institutional investors to collaborate on climate change issues. Its mission is to inform investors regarding the significant risks and opportunities presented by climate change; and to inform company management regarding the serious concerns of shareholders regarding the impact of these issues on company value. Involvement with the CDP tripled in about two and a half years, from $10 trillion under managements in

54 “Four Electric Power Companies in Midwest Agree to Disclose Climate Risk,” CERES press release February 21, 2006. Companies are Great Plains Energy Inc. in Kansas City, MO, Alliant Energy in Madison, WI, WPS Resources in Green Bay, WI and MGE Energy in Madison, WI.
Synapse Energy Economics – Carbon Dioxide & Electricity Resource Planning

Nov. 2003 to $31 trillion under management today.\(^{57}\) The CDP released its third report in September 2005. This report continued the trend in the previous reports of increased participation in the survey, and demonstrated increasing awareness of climate change and of the business risks posed by climate change. CDP traces the escalation in scope and awareness – on behalf of both signatories and respondents – to an increased sense of urgency with respect to climate risk and carbon finance in the global business and investment community.\(^{58}\)

Findings in the third CDP report included:

- More than 70% of FT500 companies responded to the CDP information request, a jump from 59% in CDP2 and 47% in CDP1.\(^{59}\)
- More than 90% of the 354 responding FT500 companies flagged climate change as posing commercial risks and/or opportunities to their business.
- 86% reported allocating management responsibility for climate change.
- 80% disclosed emissions data.
- 63% of FT500 companies are taking steps to assess their climate risk and institute strategies to reduce greenhouse gas emissions.\(^{60}\)

The fourth CDP information request (CDP4) was sent on behalf of 211 institutional investors with significant assets under management to the Chairmen of more than 1900 companies on February 1, 2006, including 300 of the largest electric utilities globally.

The California Public Employees’ Retirement System (CalPERS) announced that it will use the influence made possible by its $183 billion portfolio to try to convince companies it invests in to release information on how they address climate change. The CalPERS board of trustees voted unanimously for the environmental initiative, which focuses on the auto and utility sectors in addition to promoting investment in firms with good environmental practices.\(^{61}\)

Major financial institutions have also begun to incorporate climate change into their corporate policy. For example, Goldman Sachs and JP Morgan support mandatory market-based greenhouse gas reduction policies, and take greenhouse gas emissions into account in their financial analyses. Goldman Sachs was the first global investment bank to adopt a comprehensive environmental policy establishing company greenhouse gas

\(^{57}\) See: http://www.cdproject.net/aboutus.asp

\(^{58}\) Innovest Strategic Value Advisors; “Climate Change and Shareholder Value In 2004,” second report of the Carbon Disclosure Project; Innovest Strategic Value Advisors and the Carbon Disclosure Project; May 2004.

\(^{59}\) FT 500 is the Financial Times’ ranking of the top 500 companies ranked globally and by sector based on market capital.

\(^{61}\) *Greenwire*, February 16, 2005
reduction targets and supporting a national policy to limit greenhouse gas emissions. 62 JP Morgan, Citigroup, and Bank of America have all adopted lending policies that cover a variety of project impacts including climate change.

Some CEOs in the electric industry have determined that inaction on climate change issues is not good corporate strategy, and individual electric companies have taken steps to reduce greenhouse gas emissions. Their actions represent increasing initiative in the electric industry to address the threat of climate change and manage risk associated with future carbon constraints. Recently, eight US-based utility companies have joined forces to create the “Clean Energy Group.” This group’s mission is to seek “national four-pollutant legislation that would, among other things... stabilize carbon emissions at 2001 levels by 2013.” 63 The President of Duke Energy urges a federal carbon tax, and states that Duke should be a leader on climate change policy. 64 Prior to its merger with Duke, Cinergy Corporation was vocal on its support of mandatory national carbon regulation. Cinergy established a target is to produce 5 percent below 2000 levels by 2010 – 2012. AEP adopted a similar target. FPL Group and PSEG are both aiming to reduce total emissions by 18 percent between 2000 and 2008. 65 A fundamental impediment to action on the part of electric generating companies is the lack of clear, consistent, national guidelines so that companies could pursue emissions reductions without sacrificing competitiveness.

While statements such as these are an important first step, they are only a starting point, and do not, in and of themselves, cause reductions in carbon emissions. It is important to keep in mind the distinction between policy statements and actions consistent with those statements.

6. Anticipating the cost of reducing carbon emissions in the electric sector

Uncertainty about the form of future greenhouse gas reduction policies poses a planning challenge for generation-owning entities in the electric sector, including utilities and non-utility generators. Nevertheless, it is not reasonable or prudent to assume in resource planning that there is no cost or financial risk associated with carbon dioxide emissions, or with other greenhouse gas emissions. There is clear evidence of climate change, federal legislation has been under discussion for the past few years, state and regional regulatory efforts are currently underway, investors are increasingly pushing for companies to address climate change, and the electric sector is likely to constitute one of

65 Ibid.
the primary elements of any future regulatory plan. Analyses of various economy-wide policies indicate that a majority of emissions reductions will come from the electric sector. In this context and policy climate, utilities and non-utility generators must develop a reasoned assessment of the costs associated with expected emissions reductions requirements. Including this assessment in the evaluation of resource options enables companies to judge the robustness of a plan under a variety of potential circumstances.

This is particularly important in an industry where new capital stock usually has a lifetime of 50 or more years. An analysis of capital cycles in the electric sector finds that “external market conditions are the most significant influence on a firm’s decision to invest in or decommission large pieces of physical capital stock.” Failure to adequately assess market conditions, including the potential cost increases associated with likely regulation, poses a significant investment risk for utilities. It would be imprudent for any company investing in plants in the electric sector, where capital costs are high and assets are long-lived, to ignore policies that are inevitable in the next five to twenty years. Likewise, it would be short-sighted for a regulatory entity to accept the valuation of carbon emissions at no cost.

Evidence suggests that a utility’s overall compliance decisions will be more efficient if based on consideration of several pollutants at once, rather than addressing pollutants separately. For example, in a 1999 study EPA found that pollution control strategies to reduce emissions of nitrogen oxides, sulfur dioxide, carbon dioxide, and mercury are highly inter-related, and that the costs of control strategies are highly interdependent. The study found that the total costs of a coordinated set of actions is less than that of a piecemeal approach, that plant owners will adopt different control strategies if they are aware of multiple pollutant requirements, and that combined SO2 and carbon emissions reduction options lead to further emissions reductions. Similarly, in one of several studies on multi-pollutant strategies, the Energy Information Administration (EIA) found that using an integrated approach to NOx, SO2, and CO2, is likely to lead to lower total costs than addressing pollutants one at a time. While these studies clearly indicate that federal emissions policies should be comprehensive and address multiple pollutants, they also demonstrate the value of including future carbon costs in current resource planning activities.

There are a variety of sources of information that form a basis for developing a reasonable estimate of the cost of carbon emissions for utility planning purposes. Useful sources include recent market transactions in carbon markets, values that are currently being used in utility planning, and costs estimates based on scenario modeling of proposed federal legislation and the Regional Greenhouse Gas Initiative.

6.1 International market transactions

Implementation of the Kyoto Protocol has moved forward with great progress in recent years. Countries in the European Union (EU) are now trading carbon in the first international emissions market, the EU Emissions Trading Scheme (ETS), which officially launched on January 1, 2005. This market, however, was operating before that time – Shell and Nuon entered the first trade on the ETS in February 2003. Trading volumes increased steadily throughout 2004 and totaled approximately 8 million tons CO₂ in that year. ⁷⁰

Prices for current- and near-term EU allowances (2006-2007) escalated sharply in 2005, rising from roughly $11/ton CO₂ (9 euros/ton-CO₂) in the second half of 2004 and leveling off at about $36/ton CO₂ (28 euros/ton- CO₂) early in 2006. In March 2006, the market price for 2008 allowances hovered at around $32/ton CO₂ (25 euros/ton- CO₂). ⁷¹ Lower prices in late April resulted from several countries’ announcements that their emissions were lower than anticipated. The EU member states will submit their carbon emission allocation plans for the period 2008-2012 in June. Market activity to date in the EU Emissions trading system illustrates the difficulty of predicting carbon emissions costs, and the financial risk potentially associated with carbon emissions.

With the US decision not to ratify the Kyoto Protocol, US businesses are unable to participate in the international markets, and emissions reductions in the United States have no value in international markets. When the United States does adopt a mandatory greenhouse gas policy, the ability of US businesses and companies to participate in international carbon markets will be affected by the design of the mandatory program. For example, if the mandatory program in the United States includes a safety valve price, it may restrict participation in international markets. ⁷²

6.2 Values used in electric resource planning

Several companies in the electric sector evaluate the costs and risks associated with carbon emissions in resource planning. Some of them do so at their own initiative, as part of prudent business management, others do so in compliance with state law or regulation.

Some states require companies under their jurisdiction to account for costs and/or risks associated with regulation of greenhouse gas emissions in resource planning. These states include California, Oregon, Washington, Montana, Kentucky (through staff reports), and Utah. Other states, such as Vermont, require that companies take into account environmental costs generally. The Northwest Power and Conservation Council

⁷¹ These prices are from Evolution Express trade data, http://www.evomarkets.com/, accessed on 3/31/06.

includes various carbon scenarios in its Fifth Power Plan. For more information on these requirements, see the section above on state policies.\(^{73}\)

California has one of the most specific requirements for valuation of carbon in integrated resource planning. The California Public Utilities Commission (PUC) requires companies to include a carbon adder in long-term resource procurement plans. The Commission’s decision requires the state’s largest electric utilities (Pacific Gas & Electric, Southern California Edison, and San Diego Gas & Electric) to factor the financial risk associated with greenhouse gas emissions into new long-term power plant investments, and long-term resource plans. The Commission initially directed utilities to include a value between $8–25/ton CO\(_2\) in their submissions, and to justify their selection of a number.\(^{74}\) In April 2005, the Commission adopted, for use in resource planning and bid evaluation, a CO\(_2\) adder of $8 per ton of CO\(_2\) in 2004, escalating at 5% per year.\(^{75}\) The Montana Public Service Commission specifically directed Northwest Energy to evaluate the risks associated with greenhouse gas emissions in its 2005 Integrated Resource Plan (IRP).\(^{76}\) In 2006 the Oregon Public Utilities Commission (PUC) will be investigating its long-range planning requirements, and will consider whether a specific carbon adder should be required in the base case (Docket UM 1056).

Several electric utilities and electric generation companies have incorporated assumptions about carbon regulation and costs in their long term planning, and have set specific agendas to mitigate shareholder risks associated with future US carbon regulation policy. These utilities cite a variety of reasons for incorporating risk of future carbon regulation as a risk factor in their resource planning and evaluation, including scientific evidence of human-induced climate change, the US electric sector emissions contribution to emissions, and the magnitude of the financial risk of future greenhouse gas regulation.

Some of the companies believe that there is a high likelihood of federal regulation of greenhouse gas emissions within their planning period. For example, Pacificorp states a 50% probability of a CO\(_2\) limit starting in 2010 and a 75% probability starting in 2011. The Northwest Power and Conservation Council models a 67% probability of federal regulation in the twenty-year planning period ending 2025 in its resource plan. Northwest Energy states that CO\(_2\) taxes “are no longer a remote possibility.”\(^{77}\) Table 6.1 illustrates the range of carbon cost values, in $/ton CO\(_2\), that are currently being used in the industry for both resource planning and modeling of carbon regulation policies.

\(^{73}\) For a discussion of the use of carbon values in integrated resource planning see, Wiser, Ryan, and Bolinger, Mark; *Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans*; Lawrence Berkeley National Laboratories; August 2005. LBNL-58450

\(^{74}\) California Public Utilities Commission, Decision 04-12-048, December 16, 2004

\(^{75}\) California Public Utilities Commission, Decision 05-04-024, April 2005.

Table 6.1 CO₂ Costs in Long Term Resource Plans

<table>
<thead>
<tr>
<th>Company</th>
<th>CO₂ emissions trading assumptions for various years (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG&E*</td>
<td>$0-9/ton (start year 2006)</td>
</tr>
<tr>
<td>Avista 2005</td>
<td>$7 and $25/ton (2010)</td>
</tr>
<tr>
<td></td>
<td>$15 and $62/ton (2026 and 2023)</td>
</tr>
<tr>
<td>Portland General Electric*</td>
<td>$0-55/ton (start year 2003)</td>
</tr>
<tr>
<td>Xcel-PSCCo</td>
<td>$9/ton (start year 2010) escalating at 2.5%/year</td>
</tr>
<tr>
<td>Idaho Power*</td>
<td>$0-61/ton (start year 2008)</td>
</tr>
<tr>
<td>Pacificorp 2004</td>
<td>$0-55/ton</td>
</tr>
<tr>
<td>Northwest Energy 2005</td>
<td>$15 and $41/ton</td>
</tr>
<tr>
<td></td>
<td>$0-31/ton after 2016</td>
</tr>
</tbody>
</table>

These early efforts by utilities have brought consideration of the risks associated with future carbon regulations into the mainstream in resource planning the electric sector.

6.3 Analyses of carbon emissions reduction costs

With the emergence of federal policy proposals in the United States in the past several years, there have been several policy analyses that project the cost of carbon-dioxide equivalent emission allowances under different policy designs. These studies reveal a range of cost estimates. While it is not possible to pinpoint emissions reduction costs given current uncertainties about the goal and design of carbon regulation as well as the inherent uncertainties in any forecast, the studies provide a useful source of information for inclusion in resource decisions. In addition to establishing ranges of cost estimates, the studies give a sense of which factors affect future costs of reducing carbon emissions.

There have been several studies of proposed federal cap and trade programs in the United States. Table 6.2 identifies some of the major recent studies of carbon policy proposals.
Table 6.2. Analyses of US Carbon Policy Proposals

<table>
<thead>
<tr>
<th>Policy proposal</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffords – S. 150</td>
<td>EPA 2005</td>
</tr>
<tr>
<td>Carper 4-P – S. 843</td>
<td>EIA 2003, EPA 2005</td>
</tr>
</tbody>
</table>

Both versions of the McCain and Lieberman proposal (also known as the Climate Stewardship Act) were the subject of analyses by EIA, MIT, and the Tellus Institute. As originally proposed, the McCain Lieberman legislation capped 2010 emissions at 2000 levels, with a reduction in 2016 to 1990 levels. As revised, McCain Lieberman just included the initial cap at 2000 levels without a further restriction. In its analyses, EIA ran several sensitivity cases exploring the impact of technological innovation, gas prices, allowance auction, and flexibility mechanisms (banking and international offsets). 78

In 2003 researchers at the Massachusetts Institute of Technology also analyzed potential costs of the McCain Lieberman legislation.79 MIT held emissions for 2010 and beyond at 2000 levels (not modeling the second step of the proposed legislation). Due to constraints of the model, the MIT group studied an economy-wide emissions limit rather than a limit on the energy sector. A first set of scenarios considers the cap tightening in Phase II and banking. A second set of scenarios examines the possible effects of outside credits. And a final set examines the effects of different assumptions about baseline gross domestic product (GDP) and emissions growth.

The Tellus Institute conducted two studies for the Natural Resources Defense Council of the McCain Lieberman proposals (July 2003 and June 2004).80 In its analysis of the first proposal (S. 139), Tellus relied on a modified version of the National Energy Modeling System that used more optimistic assumptions for energy efficiency and renewable energy technologies based on expert input from colleagues at the ACEEE, the Union of Concerned Scientists, the National Laboratories and elsewhere. Tellus then modeled two policy cases. The “Policy Case” scenario included the provisions of the Climate Stewardship Act (S.139) as well as oil savings measures, a national renewable transportation fuel standard, a national RPS, and emissions standards contained in the Clean Air Planning Act. The “Advanced Policy Case” included the same complimentary energy policies as the “Policy Case” and assumed additional oil savings in the

transportation sector from increase the fuel efficiency of light-duty vehicles (CAFÉ) (25 mpg in 2005, increasing to 45 mpg in 2025).

EIA has also analyzed the effect and cost of greenhouse gas intensity targets as proposed by Senator Bingaman based on the National Commission on Energy Policy, as well as more stringent intensity targets. Some of the scenarios included safety valve prices, and some did not.

In addition to the analysis of economy-wide policy proposals, proposals for GHG emissions restrictions have also been analyzed. Both EIA and the U.S. Environmental Protection Agency (EPA) analyzed the four-pollutant policy proposed by Senator Carper (S. 843). EPA also analyzed the power sector proposal from Senator Jeffords (S. 150).

Figure 6.1 shows the emissions trajectories that the analyses of economy-wide policies projected for specific policy proposals. The graph does not include projections for policies that would just apply to the electric sector since those are not directly comparable to economy-wide emissions trajectories.

Figure 6.1. Projected Emissions Trajectories for US Economy-wide Carbon Policy Proposals.

Projected emissions trajectories from EIA and Tellus Institute Analyses of US economy-wide carbon policies. Emissions projections are for “affected sources” under proposed legislation. S. 139 is the EIA analysis of McCain Lieberman Climate Stewardship Act from 2003, SA 2028 is the EIA analysis of McCain Lieberman Climate Stewardship Act as amended in 2005. GHGI NCEP is the EIA analysis of greenhouse gas intensity targets recommended by the National Commission on Energy Policy and endorsed by Senators Bingaman and Domenici, GHGIC&T4 is the most stringent emission reduction target modeled by EIA in its 2006 analysis of greenhouse gas intensity targets, and Tellus S.139 is from the Tellus Institute analysis of S. 139.

Figure 6.2 presents projected carbon allowance costs from the economy-wide and electric sector studies in constant 2005 dollars per ton of carbon dioxide.
Figure 6.2. Allowance Cost Estimates From Studies of Economy-wide and Electric Sector US Policy Proposals

Carbon emissions price forecasts based on a range of proposed federal carbon regulations. Sources of data include: Triangles – US Energy Information Agency (EIA); Square – US EPA; Circles – Tellus Institute; Diamond – MIT. All values shown have been converted into 2005 dollars per short ton CO2 equivalent. Color-coded policies evaluated include:

Blue: S. 139, the McCain-Lieberman Climate Stewardship Act of January 2003. MIT Scenario includes banking and zero-cost credits (effectively relaxing the cap by 15% and 10% in phase I and II, respectively.) The Tellus scenarios are the “Policy” case (higher values) and the “Advanced” case (lower values). Both Tellus cases include complimentary emission reduction policies, with “advance” policy case assuming additional oil savings in the transportation sector from increase the fuel efficiency of light-duty vehicles (CAFÉ).

Tan: S.150, the Clean Power Act of 2005

Violet: S. 843, the Clean Air Planning Act of 2003. Includes international trading of offsets. EIA data include “High Offsets” (lower prices) and “Mid Offsets” (higher prices) cases. EPA data shows effect of tremendous offset flexibility.

Bright Green: SA 2028, the McCain-Lieberman Climate Stewardship Act Amendment of October 2003. This version sets the emissions cap at constant 2000 levels and allows for 15% of the carbon reductions to be met through offsets from non-covered sectors, carbon sequestration and qualified international sources.

Yellow: EIA analysis of the National Commission on Energy Policy (NCEP) policy option recommendations. Lower series has a safety-valve maximum permit price of $6.10 per metric ton CO2 in 2010 rising to $8.50 per metric ton CO2 in 2025, in 2003 dollars. Higher series has no safety value price. Both include a range of complementary policies recommended by NCEP.

Orange: EIA analysis of cap and trade policies based on NCEP, but varying the carbon intensity reduction goals. Lower-priced series (Cap and trade 1) has an intensity reduction of 2.4%/yr from 2010 to 2020 and 2.8%/yr from 2020 to 2030; safety-valve prices are $6.16 in 2010, rising to $9.86 in 2030, in 2004 dollars. Higher-priced series (Cap and trade 4) has intensity reductions of 3% per year and 4% per year for 2010-2020 and 2020-2030, respectively, and safety-valve prices of $30.92 in 2010 rising to $49.47 in 2030, in 2004 dollars.

The lowest allowance cost results (EPA S. 843, EIA NCEP, and EIA Cap & Trade) correspond to the EPA analysis of a power sector program with very extensive offset use, and to EIA analyses of greenhouse gas intensity targets with allowance safety valve prices. In these analyses, the identified emission reduction target is not achieved because the safety valve is triggered. In EIA GHGI C&T 4, the price is higher because the greenhouse gas intensity target is more stringent, and there is no safety valve. The EIA analysis of S. 843 shows higher cost projections because of the treatment of offsets, which clearly cause a huge range in the projections for this policy. In the EPA analysis, virtually all compliance is from offsets from sources outside of the power sector.

In addition to its recent modeling of US policy proposals, EIA has performed several studies projecting costs associated with compliance with the Kyoto Protocol. In 1998, EIA performed a study analyzing allowance costs associated with six scenarios ranging from emissions in 2010 at 24 percent above 1990 emissions levels, to emissions in 2010 at 7 percent below 1990 emissions levels. In 1999 EIA performed a very similar study, but looked at phasing in carbon prices beginning in 2000 instead of 2005 as in the

Carbon dioxide costs projected in these EIA studies of Kyoto targets were generally higher than those projected in the studies of economy-wide legislative proposals due in part to the more stringent emission reduction requirements of the Kyoto Protocol. For example, carbon dioxide allowances for 2010 were projected at $91 per short ton CO$_2$ ($2005) and $100 per short ton CO$_2$ ($2005)$ respectively for targets of seven percent below 1990 emissions levels. While the United States has not ratified the Kyoto Protocol, these studies are informative since they evaluate more stringent emission reduction requirements than those contained in current federal policy proposals. Scientists anticipate that avoiding dangerous climate change will require even steeper reductions than those in the Kyoto Protocol.

The State Working Group of the RGGI in the Northeast engaged ICF Consulting to analyze the impacts of implementing a CO$_2$ cap on the electric sector in the northeastern states. ICF used the IPM model to analyze the program package that the RGGI states ultimately agreed to. ICF’s analysis results (in $2004) range from $1-$5/ton CO$_2$ in 2009 to about $2.50-$12/ton CO$_2$ in 2024. The lowest CO2 allowance prices are associated with the RGGI program package under the expected emission growth scenario. The costs increase significantly under a high emissions scenario, and increase even more when the high emissions scenario is combined with a national cap and trade program due to the greater demand for allowances in a national program. ICF performed some analysis that included aggressive energy efficiency scenarios and found that those energy efficiency components would reduce the costs of the RGGI program significantly.

In 2003 ICF was retained by the state of Connecticut to model a carbon cap across the 10 northeastern states. The cap is set at 1990 levels in 2010, 5 percent below 1990 levels in 2015, and 10 percent below 1990 levels in 2020. The use of offsets is phased in with entities able to offset 5 percent or their emissions in 2015 and 10 percent in 2020. The CO$_2$ allowance price, in $US2004, for the 10-state region increases over the forecast period in the policy case, rising from $7/ton in 2010 to $11/ton in 2020.

6.4 Factors that affect projections of carbon cost

Results from a range of studies highlight certain factors that affect projections of future carbon emissions prices. In particular, the studies provide insight into whether the factors increase or decrease expected costs, and to the relationships among different factors. A number of the key assumptions that affect policy cost projections (and indeed policy costs) are discussed in this section, and summarized in Table 6.3.

86 ICF Consulting presentation of “RGGI Electricity Sector Modeling Results,” September 21, 2005. Results of the ICF analysis are available at www.rggi.org

87 Center for Clean Air Policy, *Connecticut Climate Change Stakeholder Dialogue: Recommendations to the Governors’ Steering Committee*, January 2004, p. 3.3-27.
Here we only consider these factors in a qualitative sense, although quantitative meta-analyses do exist. It is important to keep these factors in mind when attempting to compare and survey the range of cost/benefit studies for carbon emissions policies so the varying forecasts can be kept in the proper perspective.

Base case emissions forecast

Developing a business-as-usual case (in the absence of federal carbon emission regulations) is a complex modeling exercise in itself, requiring a wide range of assumptions and projections which are themselves subject to uncertainty. In addition to the question of future economic growth, assumptions must be made about the emissions intensity of that growth. Will growth be primarily in the service sector or in industry? Will technological improvements throughout the economy decrease the carbon emissions per unit of output?

In addition, a significant open question is the future generation mix in the United States. Throughout the 1990s most new generating investments were in natural gas-fired units, which emit much less carbon per unit of output than other fossil fuel sources. Today many utilities are looking at baseload coal due to the increased cost of natural gas, implying much higher emissions per MWh output. Some analysts predict a comeback for nuclear energy, which despite its high cost and unsolved waste disposal and safety issues has extremely low carbon emissions.

A business-as-usual case which included several decades of conventional base load coal, combined with rapid economic expansion, would present an extremely high emissions baseline. This would lead to an elevated projected cost of emissions reduction regardless of the assumed policy mechanism.

Complimentary policies

Complimentary energy policies, such as direct investments in energy efficiency, are a very effective way to reduce the demand for emissions allowances and thereby to lower their market price. A policy scenario which includes aggressive energy efficiency along with carbon emissions limits will result in lower allowances prices than one in which energy efficiency is not directly addressed.

Policy implementation timeline and reduction target

Most “policy” scenarios are structured according to a goal such as achieving “1990 emissions by 2010” meaning that emissions should be decreased to a level in 2010 which

is no higher than they were in 1990. Both of these policy parameters have strong implications for policy costs, although not necessarily in the intuitive sense. A later implementation date means that there is more time for the electric generating industry to develop and install mitigation technology, but it also means that if they wait to act, they will have to make much more drastic cuts in a short period of time. Models which assume phased-in targets, forcing industry to take early action, may stimulate technological innovations so that later, more aggressive targets can be reached at lower cost.

Program flexibility

The philosophy behind cap and trade regulation is that the rules should specify an overall emissions goal, but the market should find the most efficient way of meeting that goal. For emissions with broad impacts (as opposed to local health impacts) this approach will work best at minimizing cost if maximum flexibility is built into the system. For example, trading should be allowed across as broad as possible a geographical region, so that regions with lower mitigation cost will maximize their mitigation and sell their emission allowances. This need not be restricted to CO₂ but can include other GHGs on an equivalent basis, and indeed can potentially include trading for offsets which reduce atmospheric CO₂ such as reforestation projects. Another form of flexibility is to allow utilities to put emissions allowances “in the bank” to be used at a time when they hold higher value, or to allow international trading as is done in Europe through the Kyoto protocol.

One drawback to programs with higher flexibility is that they are much more complex to administer, monitor, and verify. Emissions reductions must be credited only once, and offsets and trades must be associated with verifiable actions to reduce atmospheric CO₂. A generally accepted standard is the “five-point” test: “at a minimum, eligible offsets shall consist of actions that are real, surplus, verifiable, permanent and enforceable.”

Still, there is a clear benefit in terms of overall mitigation costs to aim for as much flexibility as possible, especially as it is impossible to predict with certainty what the most cost-effective mitigation strategies will be in the future. Models which assume higher flexibility in all of these areas are likely to predict lower compliance costs for reaching any specified goal.

Technological progress

The rate of improvement in mitigation technology is a crucial assumption in predicting future emissions control costs. This has been an important factor in every major air emissions law, and has resulted, for example, in the pronounced downward trend in allowance prices for SO₂ and NOₓ in the years since regulations of those two pollutants were enacted. For CO₂, looming questions include the future feasibility and cost of carbon capture and sequestration, and cost improvements in carbon-free generation

90 An additional consideration is that greater geographic flexibility reduces potential local co-benefits, discussed below, that can derive from efforts to reduce greenhouse gas emissions.

91 Massachusetts 310 CMR 7.29.
technologies. Improvements in the efficiency of coal burning technology or in the cost of nuclear power plants may also be a factor.

Reduced emissions co-benefits

Most technologies which reduce carbon emissions also reduce emissions of other criteria pollutants, such as NOx, SO2 and mercury. This results in cost savings not only to the generators who no longer need these permits, but also to broader economic benefits in the form of reduced permit costs and consequently lower priced electricity. In addition, there are a number of co-benefits such as improved public health, reduced premature mortality, and cleaner air associated with overall reductions in power plant emissions which have a high economic value to society. Models which include these co-benefits will predict a lower overall cost impact from carbon regulations, as the cost of reducing carbon emissions will be offset by savings in these other areas.

Table 6.3. Factors That Affect Future Carbon Emissions Policy Costs

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Increases Prices if…</th>
<th>Decreases Prices if…</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Base case” emissions forecast</td>
<td>Assumes high rates of growth in the absence of a policy, strong and sustained economic growth</td>
<td>Lower forecast of business-as-usual” emissions</td>
</tr>
<tr>
<td>Complimentary policies</td>
<td>No investments in programs to reduce carbon emissions</td>
<td>Aggressive investments in energy efficiency and renewable energy independent of emissions allowance market</td>
</tr>
<tr>
<td>Policy implementation timeline</td>
<td>Delayed and/or sudden program implementation</td>
<td>Early action, phased-in emissions limits.</td>
</tr>
<tr>
<td>Reduction targets</td>
<td>Aggressive reduction target, requiring high-cost marginal mitigation strategies</td>
<td>Minimal reduction target, within range of least-cost mitigation strategies</td>
</tr>
<tr>
<td>Program flexibility</td>
<td>Minimal flexibility, limited use of trading, banking and offsets</td>
<td>High flexibility, broad trading geographically and among emissions types including various GHGs, allowance banking, inclusion of offsets perhaps including international projects.</td>
</tr>
<tr>
<td>Technological progress</td>
<td>Assume only today’s technology at today’s costs</td>
<td>Assume rapid improvements in mitigation technology and cost reductions</td>
</tr>
<tr>
<td>Emissions co-benefits</td>
<td>Ignore emissions co-benefits</td>
<td>Includes savings in reduced emissions of criteria pollutants.</td>
</tr>
</tbody>
</table>
Because of the uncertainties and interrelationships surrounding these factors, forecasting long-range carbon emissions price trajectories is quite complicated and involves significant uncertainty. Of course, this uncertainty is no greater than the uncertainty surrounding other key variables underlying future electricity costs, such as fuel prices, although there are certain characteristics that make carbon emissions price forecasting unique.

One of these is that the forecaster must predict the future political climate. As documented throughout this paper, recent years have seen a dramatic increase in both the documented effects of and the public awareness of global climate change. As these trends continue, it is likely that more aggressive and more expensive emissions policies will be politically feasible. Political events in other areas of the world may be another factor, in that it will be easier to justify aggressive policies in the United States if other nations such as China are also limiting emissions.

Another important consideration is the relationship between early investments and later emissions costs. It is likely that policies which produce high prices early will greatly accelerate technological innovation, which could lead to prices in the following decades which are lower than they would otherwise be. This effect has clearly played a role in NOx and SO2 allowance trading prices. However, the effect would be offset to some degree by the tendency for emissions limits to become more restrictive over time, especially if mitigation becomes less costly and the effects of global climate change become increasingly obvious.

6.5 Synapse forecast of carbon dioxide allowance prices

Below we offer an emissions price forecast which the authors judge to represent a reasonable range of likely future CO2 allowance prices. Because of the factors discussed above and others, it is likely that the actual cost of emissions will not follow a smooth path like those shown here but will exhibit swings between and even outside of our “low” and “high” cases in response to political, technological, market and other factors. Nonetheless, we believe that these represent the most reasonable range to use for planning purposes, given all of the information we have been able to collect and analyze bearing on this important cost component of future electricity generation.

Figure 6.3 shows our price forecasts for the period 2010 through 2030, superimposed upon projections collected from other studies mentioned in this paper.
In developing our forecast we have reviewed the cost analyses of federal proposals, the Kyoto Protocol, and current electric company use of carbon values in IRP processes, as described earlier in this paper. The highest cost projections from studies of U.S. policy proposals generally reflect a combination of factors including more aggressive emissions reductions, conservative assumptions about complimentary energy policies, and limited or no offsets. For example, some of the highest results come from EIA analysis of the most aggressive emission reductions proposed -- the Climate Stewardship Act, as originally proposed by Senators McCain and Lieberman in 2003. Similarly, the highest cost projection for 2025 is from the EPA analysis of the Carper 4-P bill, S. 843, in a scenario with fairly restricted offset use. The lowest cost projections are from the analysis of the greenhouse gas intensity goal with a safety valve, as proposed by the National Commission on Energy Policy, as well as from an EPA analysis of the Carper 4-P bill, S. 843, with no restrictions on offset use. These highest and lowest cost estimates illustrate the effect of the factors that affect projections of CO2 emissions costs, as discussed in the previous section.

We believe that the U.S. policies that have been modeled can reasonably be considered to represent the range of U.S. policies that could be adopted in the next several years. However, we do not anticipate the adoption of either the most aggressive or restrictive, or the most lenient and flexible policies illustrated in the range of projections from recent
analyses. Thus we consider both the highest and the lowest cost projections from those studies to be outside of our reasonable forecast.

We note that EIA projections of costs to comply with Kyoto Protocol targets were much higher, in the range of $100/ton CO₂. The higher cost projections associated with the Kyoto Protocol targets, which are somewhat more aggressive than U.S. policy proposals, are consistent with the anticipated effect of a more carbon-constrained future. The EIA analysis also has pessimistic assumptions regarding carbon emission-reducing technologies and complementary policies. The range of values that certain electric companies currently use in their resource planning and evaluation processes largely fall within the high and low cost projections from policy studies. Our forecast of carbon dioxide allowance prices is presented in Table 6.4.

Table 6.4. Synapse forecast of carbon dioxide allowance prices ($2005/ton CO₂).

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>Levelized Value 2011-2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synapse Low Case</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>8.23</td>
</tr>
<tr>
<td>Synapse Mid Case</td>
<td>5</td>
<td>25</td>
<td>35</td>
<td>19.83</td>
</tr>
<tr>
<td>Synapse High Case</td>
<td>10</td>
<td>40</td>
<td>50</td>
<td>31.43</td>
</tr>
</tbody>
</table>

As illustrated in the table, we have identified what we believe to be a reasonable high, low, and mid case for three time periods: 2010, 2020, and 2030. These high, low, and mid case values for the years in question represent a range of values that are reasonably plausible for use in resource planning. Certainly other price trajectories are possible, indeed likely depending on factors such as level of reduction target, and year of implementation of a policy. We have much greater confidence in the levelized values over the period than we do in any particular annual values or in the specific shape of the price projections.

Using these value ranges, we have plotted cost lines in Figure 6.3 for use in resource analysis. In selecting these values, we have taken into account a variety of factors for the three time periods. While some regions and states may impose carbon emissions costs sooner, or federal legislation may be adopted sooner, our assumption conservatively assumes that implementation of any federal legislative requirements is unlikely before 2010. We project a cost in 2010 of between zero and $10 per ton of CO₂.

During the decade from 2010 to 2020, we anticipate that a reasonable range of carbon emissions prices reflects the effects of increasing public concern over climate change (this public concern is likely to support increasingly stringent emission reduction requirements) and the reluctance of policymakers to take steps that would increase the cost of compliance (this reluctance could lead to increased emphasis on energy efficiency, modest emission reduction targets, or increased use of offsets). Thus we find the widest uncertainty in our forecasts begins at the end of this decade from $10 to $40 per ton of CO₂, depending on the relative strength of these factors.

After 2020, we expect the price of carbon emissions allowances to trend upward toward the marginal mitigation cost of carbon emissions. This number still depends on uncertain
factors such as technological innovation and the stringency of carbon caps, but it is likely that the least expensive mitigation options (such as simple energy efficiency and fuel switching) will be exhausted. Our projection for the end of this decade ranges from $20 to $50 per ton of CO2 emissions.

We think the most likely scenario is that as policymakers commit to taking serious action to reduce carbon emissions, they will choose to enact both cap and trade regimes and a range of complementary energy policies that lead to lower cost scenarios, and that technology innovation will reduce the price of low-carbon technologies, making the most likely scenario closer to (though not equal to) low case scenarios than the high case scenario. The probability of taking this path increases over time, as society learns more about optimal carbon reduction policies.

After 2030, and possibly even earlier, the uncertainty surrounding a forecast of carbon emission prices increases due to interplay of factors such as the level of carbon constraints required, and technological innovation. As discussed in previous sections, scientists anticipate that very significant emission reductions will be necessary, in the range of 80 percent below 1990 emission levels, to achieve stabilization targets that keep global temperature increases to a somewhat manageable level. As such, we believe there is a substantial likelihood that response to climate change impacts will require much more aggressive emission reductions than those contained in U.S. policy proposals, and in the Kyoto Protocol, to date. If the severity and certainty of climate change are such that emissions levels 70-80% below current rates are mandated, this could result in very high marginal emissions reduction costs, though the cost of such deeper cuts has not been quantified on a per ton basis.

On the other hand, we also anticipate a reasonable likelihood that increasing concern over climate change impacts, and the accompanying push for more aggressive emission reductions, will drive technological innovation, which may be anticipated to prevent unlimited cost escalation. For example, with continued technology improvement, coupled with attainment of economies of scale, significant price declines in distributed generation, grid management, and storage technologies, are likely to occur. The combination of such price declines and carbon prices could enable tapping very large supplies of distributed resources, such as solar, low-speed wind and bioenergy resources, as well as the development of new energy efficiency options. The potential development of carbon sequestration strategies, and/or the transition to a renewable energy-based economy may also mitigate continued carbon price escalation.

7. Conclusion

The earth’s climate is strongly influenced by concentrations of greenhouse gases in the atmosphere. International scientific consensus, expressed in the Third Assessment Report of the Intergovernmental Panel on Climate Change and in countless peer-reviewed scientific studies and reports, is that the climate system is already being – and will continue to be – disrupted due to anthropogenic emissions of greenhouse gases. Scientists expect increasing atmospheric concentrations of greenhouse gases to cause temperature increases of 1.4 – 5.8 degrees centigrade by 2100, the fastest rate of change
since end of the last ice age. Such global warming is expected to cause a wide range of climate impacts including changes in precipitation patterns, increased climate variability, melting of glaciers, ice shelves and permafrost, and rising sea levels. Some of these changes have already been observed and documented in a growing body of scientific literature. All countries will experience social and economic consequences, with disproportionate negative impacts on those countries least able to adapt.

The prospect of global warming and changing climate has spurred international efforts to work towards a sustainable level of greenhouse gas emissions. These international efforts are embodied in the United Nations Framework Convention on Climate Change. The Kyoto Protocol, a supplement to the UNFCCC, establishes legally binding limits on the greenhouse gas emissions by industrialized nations and by economies in transition.

The United States, which is the single largest contributor to global emissions of greenhouse gases, remains one of a very few industrialized nations that have not signed onto the Kyoto Protocol. Nevertheless, federal legislation seems likely in the next few years, and individual states, regional organizations, corporate shareholders and corporations themselves are making serious efforts and taking significant steps towards reducing greenhouse gas emissions in the United States. Efforts to pass federal legislation addressing carbon emissions, though not yet successful, have gained ground in recent years. And climate change issues have seen an unprecedented level of attention in the United States at all levels of government in the past few years.

These developments, combined with the growing scientific certainty related to climate change, mean that establishing federal policy requiring greenhouse gas emission reductions is just a matter of time. The question is not whether the United States will develop a national policy addressing climate change, but when and how, and how much additional damage will have been incurred by the process of delay. The electric sector will be a key component of any regulatory or legislative approach to reducing greenhouse gas emissions both because of this sector’s contribution to national emissions and the comparative ease of controlling emissions from large point sources. While the future costs of compliance are subject to uncertainty, they are real and will be mandatory within the lifetime of electric industry capital stock being planned for and built today.

In this scientific, policy and economic context, it is imprudent for decision-makers in the electric sector to ignore the cost of future carbon emissions reductions or to treat future carbon emissions reductions merely as a sensitivity case. Failure to consider the potential future costs of greenhouse gas emissions under future mandatory emission reductions will result in investments that prove quite uneconomic in the future. Long term resource planning by utility and non-utility owners of electric generation must account for the cost of mitigating greenhouse gas emissions, particularly carbon dioxide. For example, decisions about a company’s resource portfolio, including building new power plants, reducing other pollutants or installing pollution controls, avoided costs for efficiency or renewables, and retirement of existing power plants all can be more sophisticated and more efficient with appropriate consideration of future costs of carbon emissions mitigation.

Regulatory uncertainty associated with climate change clearly presents a planning challenge, but this does not justify proceeding as if no costs will be associated with
carbon emissions in the future. The challenge, as with any unknown future cost driver, is to forecast a reasonable range of costs based on analysis of the information available. This report identifies many sources of information that can form the basis of reasonable assumptions about the likely costs of meeting future carbon emissions reduction requirements.

Additional Costs Associated with Greenhouse Gases

It is important to note that the greenhouse gas emission reduction requirements contained in federal legislation proposed to date, and even the targets in the Kyoto Protocol, are relatively modest compared with the range of emissions reductions that are anticipated to be necessary for keeping global warming at a manageable level. Further, we do not attempt to calculate the full cost to society (or to electric utilities) associated with anticipated future climate changes. Even if electric utilities comply with some of the most aggressive regulatory requirements underlying our CO2 price forecasts presented above, climate change will continue to occur, albeit at a slower pace, and more stringent emissions reductions will be necessary to avoid dangerous changes to the climate system.

The consensus from the international scientific community clearly indicates that in order to stabilize the concentration of greenhouse gases in the atmosphere and to try to keep further global warming trends manageable, greenhouse gas emissions will have to be reduced significantly below those limits underlying our CO2 price forecasts. The scientific consensus expressed in the Intergovernmental Panel on Climate Change Report from 2001 is that greenhouse gas emissions would have to decline to a very small fraction of current emissions in order to stabilize greenhouse gas concentrations, and keep global warming in the vicinity of a 2-3 degree centigrade temperature increase. Simply complying with the regulations underlying our CO2 price forecasts does not eliminate the ecological and socio-economic threat created by CO2 emissions – it merely mitigates that threat.

Incorporating a reasonable CO2 price forecast into electricity resource planning will help address electricity consumer concerns about prudent economic decision-making and direct impacts on future electricity rates. However, current policy proposals are just a first step in the direction of emissions reductions that are likely to ultimately be necessary. Consequently, electric sector participants should anticipate increasingly stringent regulatory requirements. In addition, anticipating the financial risks associated with greenhouse gas regulation does not address all the ecological and socio-economic concerns posed by greenhouse gas emissions. Regulators should consider other policy mechanisms to account for the remaining pervasive impacts associated with greenhouse gas emissions.
This report is unchanged from the August 31, 2006 version except for the correction of a graphical error.
References

Cities for Climate Protection Campaign, including links to over 150 cities that have adopted greenhouse gas reduction measures, is available at http://www.iclei.org/projserv.htm#ccp

Greenwire. February 16, 2005. Available at http://www.eenews.net/gw/

ICF Consulting presentation of “RGGI Electricity Sector Modeling Results,” September 21, 2005. Results of the ICF analysis are available at www.rggi.org

http://www.ceres.org/pub/docs/Ceres_INCR_05_call_for_action.pdf

Maryland Senate Bill 154 Healthy Air Act, signed April 6, 2006.
http://mlis.state.md.us/2006rs/billfile/sb0154.htm

Available at http://www.energycommission.org/

http://www.nwcouncil.org/energy/powerplan/plan/Default.htm

Regional Greenhouse Gas Initiative. Information, including Memorandum of Understanding, proposed Model Rule, comments on State Working Group proposals, and all meeting presentations, available at: www.rggi.org

Rowe, John W., *Comments in Response to Bingaman-Domenici Climate Change White Paper,* March 13, 2006

