

### **Report on the Air Emissions Test Program**

**Conducted for Big Rivers Electric Corporation** At the Wilson Station Facility located in Centertown, Kentucky

> Report No. 3648 Wilson-Reduced Load November 9, 2011

# **Table of Contents**

| PROJECT OVERVIEW                                           | 2 |
|------------------------------------------------------------|---|
| General                                                    | 2 |
| Methodology                                                | 2 |
| Parameters                                                 |   |
| Results                                                    | 4 |
| SUMMARY OF RESULTS                                         | 6 |
| Table 1 – Summary of the Stack Outlet FPM and CPM Results  | 6 |
| Table 2 – Summary of the Stack Outlet HCl and HF Results   | 7 |
| Table 3 – Summary of the Stack Outlet Metallic HAP Results | 8 |
| Table 4 – Summary of the Stack Outlet Hg Results           |   |
| TEST PROCEDURES                                            |   |
| Method Listing                                             |   |
| Method Descriptions                                        |   |
| Method 1                                                   |   |
| Method 2                                                   |   |
| Method 3                                                   |   |
| Method 4                                                   |   |
| Method 5B/202                                              |   |
| Method 19                                                  |   |
| Method 26A                                                 |   |
| Method 29                                                  |   |
| Method 30B                                                 |   |

#### APPENDIX

Figures Sample Calculations Parameters Field Data Printouts Field Data Analyzer Data Laboratory Data Calibration Data



# **Project Overview**

#### General

Airtech Environmental Services Inc. (Airtech) was contracted by Big Rivers Electric Corporation (Big Rivers) to perform an air emission test program at the Wilson Station facility located in Centertown, Kentucky. Testing was conducted to gather stack test data for an evaluation of any corrective action that may be needed to comply with the Transport Rule and Utility MACT emission limits.

Testing was conducted at the Unit 1 exhaust stack. All testing was conducted while the Unit was operating at a reduced load. Testing was conducted to meet the requirements of Big Rivers and Sargent & Lundy, LLC.

The specific objectives of the test program were:

- Determine the emissions of non-sulfuric acid filterable particulate matter (FPM) and condensible particulate matter (CPM) at the test location.
- Determine the emissions of hydrogen chloride (HCl) and hydrogen fluoride (HF) from the test location.
- Determine the emissions of metallic hazardous air pollutants (HAP)<sup>1</sup> from the test location.
- Determine the emissions of oxidized and elemental mercury (Hg) at the test location.

Testing was performed on September 29 and September 30, 2011. Coordinating the field portion of the test program were:

Mike Galbraith – Big Rivers Electric Corporation Michael Hess – Airtech Environmental Services Inc.

#### Methodology

All methods employed during the test program were performed in strict adherence with the latest published version(s). Recovery of all sample trains was performed in an on-site mobile laboratory. All sample trains were sealed with Teflon tape when not in use. All test components were sealed when transported between the laboratory and the test location. All field technicians wore polyethylene or plastic gloves while recovering field samples.

EPA Methods 5B and 202 were used in a combined sampling train to determine the concentrations of non-sulfuric acid filterable particulate matter (FPM), condensable

<sup>&</sup>lt;sup>1</sup> Metallic HAPs are defined as: antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), manganese (Mn), nickel (Ni) and Selenium (Se).



particulate matter (CPM) and total PM at the test location. For the EPA Methods 5B/202, a sample of the gas stream was withdrawn isokinetically from the source. Non-sulfuric acid FPM was collected in a heated probe and on a heated glass fiber filter. CPM passed through the probe and filter and was collected in a dry, glass impinger system. The amount of particulate matter collected with each sample fraction was compared to the volume of dry gas sampled to calculate a particulate concentration. Results for FPM, CPM and total PM are expressed in units of grains per dry standard cubic foot (gr/dscf), in units of pounds per hour (lb/hr) and in units of pounds per million Btu (lb/mmBtu). Three (3), ninety-minute test runs were performed at the stack outlet test location.

EPA Method 26A was used to determine the concentration of HCl and HF at the Stack Outlet test location. For the EPA Method 26A, a sample of the stack gas was withdrawn isokinetically from the source through a glass nozzle, a heated, Teflon lined probe and a heated Teflon filter. HCl and HF in the sample stream passed through the probe and filter and were collected in a series of impingers containing a dilute sulfuric acid ( $H_2SO_4$ ) solution.

HCl and HF results are expressed in pounds per dry standard cubic foot (lb/dscf), parts per million dry volume (ppmdv), pounds per million Btu (lb/mmBtu) and pounds per hour (lb/hr). Three (3) 120 minute test runs were performed at the test location.

EPA Method 29 was used to determine the metallic HAPs concentrations at the test location. For this project, metallic HAPs were defined as antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), manganese (Mn), nickel (Ni) and selenium (Se). With the Method 29 approach, a sample of the gas stream was withdrawn isokinetically from the source and the metallic HAPs in the sample gas were collected in a heated sample probe, on a heated quartz fiber filter, and in a series of chilled, glass impingers charged with metals absorbing solutions. Analysis of the samples was performed by ElementOne Laboratories located in Wilmington, North Carolina. Metallic HAPs results are expressed in units of micrograms per dry standard cubic meter (ug/dscm), pounds per million Btu (lb/mmBtu) and pounds per hour (lb/hr). Three (3) 120 minute test runs were performed at the test location.

EPA Method 30B was used to determine the concentrations of oxidized, elemental and total vapor-phase Hg at the test location. For the EPA Method 30B, a sample of the effluent was withdrawn from the source at a constant rate through paired, in-situ, sorbent media traps. One trap was spiked and the other was packed with multiple stages of media designed to separately collect total gaseous oxidized mercury  $(Hg^{+2})$  and total gaseous elemental mercury  $(Hg^0)$ . Probe heaters were in operation to ensure that the tubes were maintained above the dew point of the sample gas. The masses of the mercury species collected with the traps was compared to the volume of dry gas sampled to calculate the mercury concentrations. Analysis for the two mercury species was performed by Airtech Environmental Services Inc. at its laboratory located in Denver, Colorado. Results for Hg are expressed in units of micro grams per dry standard cubic meter (ug/dscm), pounds



per million Btu (lb/mmBtu) and pounds per hour (lb/hr). Three (3), ninety-minute test runs were performed at the test location.

#### **Parameters**

The following specific parameters were determined at the stack test location:

- gas temperature
- volumetric flow rate
- carbon dioxide content
- oxygen content
- moisture content
- filterable particulate matter
- condensable particulate matter concentration
- hydrogen chloride concentration
- hydrogen fluoride concentration
- metallic hazardous air pollutant concentration
- oxidized mercury concentration
- elemental mercury concentration

#### Results

A summary of test results is presented in Tables 1 through 4 on Pages 6 through 10.

The  $F_d$  factors listed in the tables were calculated from coal samples collected during the testing. The  $F_d$  factor worksheets can be found in the Parameters section of the Appendix. All coal analysis can be found in the Laboratory section of the Appendix.

For the metals results, if a metal was not detected in one fraction of the sample train but detected in another fraction of the sample train, the reporting limit was used in the calculation of the total amount collected by the sample train for the non-detect fraction. These metals results are noted with a "\*".

The volumetric flow rate determined by the Method 5/202 sampling trains was used to calculate the mass emission rates for mercury at the stack test location.



Each Method 30B test run consisted of a spiked sample and an un-spiked sample. Method 30B QA requirements are for the average spike recovery (R) to be 85%<R<115%. Additionally, the relative deviation (RD) for each set of paired train results should be less than 10%. The tables below summarize the Method 30B QA for this test program.

| Stack   | Spike Recovery | <b>Relative Deviation</b> |
|---------|----------------|---------------------------|
|         | (%)            | (%)                       |
| Run1    | 86.4           | 5.30                      |
| Run 2   | 77.9           | 6.86                      |
| Run 3   | 123            | 7.57                      |
| Average | 95.7           | NA                        |

Submitted by:

Catay Busse

- w. Cht

Cathy Busse

James Christ

Reviewed by:



# Summary of Results

#### Table 1 – Summary of the Stack Outlet FPM and CPM Results

| Test Parameters              | Run 1     | Run 2     | Run 3     | Average   |
|------------------------------|-----------|-----------|-----------|-----------|
| Date                         | 9/28/2011 | 9/29/2011 | 9/29/2011 | -         |
| Start Time                   | 21:54     | 1:13      | 4:04      |           |
| Stop Time                    | 23:43     | 3:24      | 5:54      |           |
| Fd (dscf/mmBtu)              | 9,942     | 9,835     | 9,856     |           |
| Gas Conditions               |           |           |           |           |
| Temperature (°F)             | 124       | 122       | 122       | 123       |
| Volumetric Flow Rate (acfm)  | 1,171,000 | 1,182,200 | 1,195,100 | 1,182,800 |
| Volumetric Flow Rate (scfm)  | 1,038,300 | 1,050,700 | 1,062,700 | 1,050,600 |
| Volumetric Flow Rate (dscfm) | 926,800   | 929,500   | 935,500   | 930,600   |
| Carbon Dioxide (% dry)       | 10.2      | 10.8      | 10.8      | 10.6      |
| Oxygen (% dry)               | 9.0       | 7.9       | 8.0       | 8.3       |
| Moisture (%)                 | 10.8      | 11.6      | 12.0      | 11.4      |
| Filterable PM Results        |           |           |           |           |
| Concentration (grains/dscf)  | 0.00723   | 0.0106    | 0.0101    | 0.00931   |
| Emission Rate (lb/mmBtu)     | 0.0180    | 0.0240    | 0.0231    | 0.0217    |
| Emission Rate (lb/hr)        | 57.4      | 84.4      | 81.1      | 74.3      |
| Condensible PM Results       |           |           |           |           |
| Concentration (grains/dscf)  | 0.00227   | 0.00245   | 0.00222   | 0.00231   |
| Emission Rate (lb/mmBtu)     | 0.00566   | 0.00554   | 0.00506   | 0.00542   |
| Emission Rate (Ib/hr)        | 18.0      | 19.5      | 17.8      | 18.4      |
| <u>Total PM Results</u>      |           |           |           |           |
| Concentration (grains/dscf)  | 0.00950   | 0.0130    | 0.0123    | 0.0116    |
| Emission Rate (lb/mmBtu)     | 0.0237    | 0.0295    | 0.0281    | 0.0271    |
| Emission Rate (lb/hr)        | 75.5      | 104       | 98.9      | 92.8      |



|                                  | _ /            | -         |           |                 |
|----------------------------------|----------------|-----------|-----------|-----------------|
| <u>Test Parameters</u>           | Run 1          | Run 2     | Run 3     | Average         |
| Date                             | 9/28-9/29/2011 | 9/29/11   | 9/29/11   |                 |
| Start Time                       | 21:54          | 1:41      | 4:23      |                 |
| Stop Time                        | 0:43           | 3:53      | 6:31      |                 |
|                                  |                |           |           |                 |
| Fuel Conditions                  | 0.040          | 0.005     | 0.050     |                 |
| Fd (dscf/mmBtu)                  | 9,942          | 9,835     | 9,856     |                 |
| Chlorine (mg/kg dry)             | 429            | 402       | 358       |                 |
| Fluoride (mg/kg dry)             | 55             | 56        | 55        |                 |
| Gas Conditions                   |                |           |           |                 |
| Temperature (°F)                 | 125            | 125       | 125       | 125             |
| Volumetric Flow Rate (acfm)      | 1,232,000      | 1,163,000 | 1,142,000 | 1,179,000       |
| Volumetric Flow Rate (scfm)      | 1,090,000      | 1,029,000 | 1,010,000 | 1,043,000       |
| Volumetric Flow Rate (dscfm)     | 950,000        | 922,000   | 887,000   | 920,000         |
| Carbon Dioxide (% dry)           | 10.2           | 10.8      | 10.8      | 920,000<br>10.6 |
|                                  | 9.0            | 7.9       | 8.0       | 8.3             |
| Oxygen (% dry)                   |                |           |           |                 |
| Moisture (%)                     | 12.9           | 10.4      | 12.2      | 11.8            |
| Hydrogen Chloride Results        |                |           |           |                 |
| Concentration (lb/dscf)          | 8.30E-09       | 5.94E-09  | 6.59E-09  | 6.94E-09        |
| Concentration (ppmdv)            | 0.0877         | 0.0628    | 0.0696    | 0.0733          |
| Emission Rate (lb/mmBtu)         | 1.45E-04       | 9.42E-05  | 1.05E-04  | 1.15E-04        |
| Emission Rate (lb/hr)            | 0.473          | 0.329     | 0.351     | 0.384           |
| ×                                |                |           |           |                 |
| <u>Hydrogen Fluoride Results</u> |                |           |           |                 |
| Concentration (lb/dscf)          | 3.84E-09       | 3.52E-09  | 3.78E-09  | 3.71E-09        |
| Concentration (ppmdv)            | 0.0739         | 0.0679    | 0.0728    | 0.0715          |
| Emission Rate (lb/mmBtu)         | 6.70E-05       | 5.58E-05  | 6.04E-05  | 6.11E-05        |
| Emission Rate (lb/hr)            | 0.219          | 0.195     | 0.201     | 0.205           |
|                                  |                |           |           |                 |

# Table 2 – Summary of the Stack Outlet HCl and HF Results



#### Table 3 – Summary of the Stack Outlet Metallic HAP Results

|                                                                                                                                             | D                | D                | <b>D</b>         | •          |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------|
| <u>Test Parameters</u>                                                                                                                      | Run 1            | Run 2            | Run 3            | Average    |
| Date<br>Oto at Time a                                                                                                                       | 9/28-9/29/2011   | 9/29/11          | 9/29/11          |            |
| Start Time                                                                                                                                  | 21:54            | 1:41             | 4:19             |            |
| Stop Time                                                                                                                                   | 0:31             | 3:53             | 6:31             |            |
| Fuel Conditions                                                                                                                             |                  |                  |                  |            |
| Fd (dscf/mmBtu)                                                                                                                             | 9,942            | 9,835            | 9,856            |            |
| Antimony (mg/kg dry)                                                                                                                        | 0.01             | 0.02             | 0.01             |            |
| Arsenic (mg/kg dry)                                                                                                                         | 1.54             | 1.35             | 1.65             |            |
| Beryllium (mg/kg dry)                                                                                                                       | 0.66             | 0.28             | 0.08             |            |
| Cadmium (mg/kg dry)                                                                                                                         | 0.05             | 0.02             | 0.04             |            |
| Chromium (mg/kg dry)                                                                                                                        | 2.89             | 1.78             | 2.69             |            |
| Cobalt (mg/kg dry)                                                                                                                          | 1.14             | 0.82             | 1.69             |            |
| Lead (mg/kg dry)                                                                                                                            | 5.03             | 4.46             | 6.37             |            |
| Manganese (mg/kg dry)                                                                                                                       | 13.45            | 4.39             | 6.78             |            |
| Nickel (mg/kg dry)                                                                                                                          | 35.79            | 25.03            | 41.11            |            |
| Selenium (mg/kg dry)                                                                                                                        | 0.40             | 0.15             | 0.18             |            |
| Gas Conditions                                                                                                                              |                  |                  |                  |            |
| Temperature (°F)                                                                                                                            | 125              | 124              | 125              | 124        |
| Volumetric Flow Rate (acfm)                                                                                                                 | 1,220,000        | 1,200,000        | 1,220,000        | 1,220,000  |
| Volumetric Flow Rate (scfm)                                                                                                                 | 1,080,000        | 1,070,000        | 1,080,000        | 1,080,000  |
| Volumetric Flow Rate (dscfm)                                                                                                                | 940,000          | 940,000          | 950,000          | 940,000    |
| Carbon Dioxide (% dry)                                                                                                                      | 10.2             | 10.8             | 10.8             | 10.6       |
| Oxygen (% dry)                                                                                                                              | 9.0              | 7.9              | 8.0              | 8.3        |
| Moisture (%)                                                                                                                                | 13.3             | 12.3             | 12.2             | 12.6       |
| Antimony - Sb                                                                                                                               |                  |                  |                  |            |
| Concentration (ug/dscm)                                                                                                                     | 0.281            | 0.835            | 0.163            | 0.426      |
| Emission Rate (lb/mmBtu)                                                                                                                    | 3.06E-07         | 8.27E-07         | 1.62E-07         | 4.32E-07   |
| Emission Rate (lb/hr)                                                                                                                       | 0.000989         | 0.00293          | 0.000580         | 0.00150    |
| Areania Ac                                                                                                                                  |                  |                  |                  |            |
| <u>Arsenic - As</u>                                                                                                                         | 2.01             | 1.46             | 1.44             | 4 6 4      |
| Concentration (ug/dscm)                                                                                                                     | 2.01<br>2.19E-06 | 1.40<br>1.45E-06 | 1.44<br>1.44E-06 | 1.64       |
| Emission Rate (lb/mmBtu)                                                                                                                    |                  |                  |                  | 1.69E-06   |
| Emission Rate (lb/hr)                                                                                                                       | 0.00709          | 0.00512          | 0.00514          | 0.00578    |
| <u>Berylium - Be</u>                                                                                                                        |                  |                  |                  |            |
| Concentration (ug/dscm)                                                                                                                     | <0.0264          | <0.0269          | <0.0267          | <0.0267    |
| Emission Rate (lb/mmBtu)                                                                                                                    | <2.88E-08        | <2.66E-08        | <2.66E-08        | <2.73E-08  |
| Emission Rate (lb/hr)                                                                                                                       | <0.0000930       | <0.0000943       | <0.0000950       | <0.0000941 |
| <indicates below="" both="" dete<="" fractions="" td="" that="" the="" were=""><td>action limit</td><td></td><td></td><td></td></indicates> | action limit     |                  |                  |            |

<Indicates that both fractions were below the detection limit.



#### Table 3 – Summary of the Stack Outlet Metallic HAP Results (continued)

| <u>Test Parameters</u><br>Date<br>Start Time<br>Stop Time                                             | <b>Run 1</b><br>9/28-9/29/2011<br>21:54<br>0:31 | <b>Run 2</b><br>9/29/11<br>1:41<br>3:53 | <b>Run 3</b><br>9/29/11<br>4:19<br>6:31 | Average                      |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|
| <u>Cadmium - Cd</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)   | 0.173*<br>1.89E-07*<br>0.000610*                | 1.28<br>1.26E-06<br>0.00447             | <0.107<br><1.06E-07<br><0.000380        | 0.519<br>5.19E-07<br>0.00182 |
| <u>Chromium - Cr</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)  | 18.5<br>2.02E-05<br>0.0653                      | 5.65<br>5.59E-06<br>0.0198              | 3.16<br>3.15E-06<br>0.0113              | 9.12<br>9.65E-06<br>0.0321   |
| <u>Cobalt- Co</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)     | 0.680<br>7.42E-07<br>0.00240                    | 0.386<br>3.82E-07<br>0.00135            | 0.204<br>2.04E-07<br>0.000728           | 0.423<br>4.42E-07<br>0.00149 |
| <u>Lead - Pb</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)      | 1.32<br>1.44E-06<br>0.00467                     | 3.56<br>3.52E-06<br>0.0125              | 0.734<br>7.32E-07<br>0.00262            | 1.87<br>1.90E-06<br>0.00658  |
| <u>Manganese - Mn</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr) | 6.82<br>7.43E-06<br>0.0240                      | 4.59<br>4.54E-06<br>0.0161              | 2.65<br>2.64E-06<br>0.00943             | 4.68<br>4.87E-06<br>0.0165   |
| <u>Nickel - Ni</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)    | 66.8<br>7.28E-05<br>0.235                       | 38.7<br>3.83E-05<br>0.136               | 14.5<br>1.44E-05<br>0.0516              | 40.0<br>4.19E-05<br>0.141    |
| <u>Selenium - Se</u><br>Concentration (ug/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)  | 40.2<br>4.38E-05<br>0.142                       | 25.4<br>2.52E-05<br>0.0891              | 28.4<br>2.83E-05<br>0.101               | 31.4<br>3.24E-05<br>0.111    |

\* Indicates that one fraction was below the detection limit.

<Indicates that both fractions were below the detection limit.



# Table 4 – Summary of the Stack Outlet Hg Results

| <u>Test Parameters</u><br>Date<br>Start Time<br>Stop Time                                                                                                                                  | <b>Run 1</b><br>9/28-9/29/2011<br>22:59<br>0:29 | <b>Run 2</b><br>9/29/11<br>2:18<br>3:48     | <b>Run 3</b><br>9/29/11<br>5:09<br>6:39     | Average                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| <u>Fuel Conditions</u><br>Fuel Factor (Fd)<br>Mercury (mg/kg dry)                                                                                                                          | 9,942<br>0.088                                  | 9,835<br>0.080                              | 9,856<br>0.078                              |                                             |
| <u>Gas Conditions</u><br>M5/202 Volumetric Flow, (dscfm)<br>M5/202 Oxygen (% dry)<br>M5/202 Moisture (%)                                                                                   | 926,800<br>9.0<br>10.8                          | 929,500<br>7.9<br>11.6                      | 935,500<br>8.0<br>12.0                      | 930,600<br>8.3<br>11.4                      |
| <b>Oxidized Mercury Results</b><br>Concentration Train A (µg/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)                                                                    | 0.204<br>2.22E-07<br>0.000708                   | 0.290<br>2.87E-07<br>0.00101                | 0.174<br>1.74E-07<br>0.000611               | 0.223<br>2.28E-07<br>0.000776               |
| Elemental Mercury Results<br>Concentration Train A (µg/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr)                                                                          | 0.856<br>9.33E-07<br>0.00297                    | 1.07<br>1.06E-06<br>0.00374                 | 0.917<br>9.14E-07<br>0.00321                | 0.949<br>9.70E-07<br>0.00331                |
| <u>Total Mercury Results</u><br>Concentration Train A (μg/dscm)<br>Concentration Train B (μg/dscm)<br>Average Concentration (μg/dscm)<br>Emission Rate (lb/mmBtu)<br>Emission Rate (lb/hr) | 1.06<br>0.955<br>1.01<br>1.10E-06<br>0.00350    | 1.36<br>1.19<br>1.27<br>1.26E-06<br>0.00444 | 1.10<br>1.27<br>1.18<br>1.18E-06<br>0.00415 | 1.17<br>1.14<br>1.16<br>1.18E-06<br>0.00403 |



# **Test Procedures**

#### **Method Listing**

The test methods found in 40 CFR Part 60, Appendix A and 40 CFR Part 51, Appendix Mwere referenced during the test program. The following individual methods were used:

| EPA Method 1   | Sample and Velocity Traverse for Stationary Sources                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| EPA Method 2   | Determination of Stack Gas Velocity and Volumetric Flow<br>Rate (Type S pitot tube)                                                 |
| EPA Method 3B  | Analysis for the Determination of Emission Rate<br>Correction Factor or Excess Air                                                  |
| EPA Method 4   | Determination of Moisture Content in Stack Gases                                                                                    |
| EPA Method 5B  | Determination of Non-Sulfuric Acid Particulate Matter<br>Emissions from Stationary Sources                                          |
| EPA Method 19  | Determination of Sulfur Dioxide Removal Efficiency and<br>Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides<br>Emission Rates |
| EPA Method 26A | Determination of Hydrogen Halide and Halogen Emissions<br>from Stationary Sources - Isokinetic Method                               |
| EPA Method 29  | Determination of Metals Emissions from Stationary<br>Sources                                                                        |
| EPA Method 30B | Determination of Total Vapor Phase Mercury Emissions<br>from Coal-Fired Combustion Sources Using Carbon<br>Sorbent Traps            |
| EPA Method 202 | Dry Impinger Method for Determining Condensable<br>Particulate Emissions from Stationary Sources                                    |

#### **Method Descriptions**

#### Method 1

Method 1 was used to determine the suitability of the Stack test location and to determine the sample points used for the isokinetic pollutant concentration determinations. The Stack Outlet test location conformed to the minimum requirements of being located at least 2.0 diameters downstream and at least 0.5 diameters upstream from the nearest flow disturbance.

The Stack Outlet test location was a round, vertical stack with a diameter of 408 inches. Three points were sampled for each of the four test ports. The test location was located approximately 7.4 duct diameters downstream and approximately 2.9 duct diameters





upstream from the nearest flow disturbance. A cross section of the sampling location, showing the sample points, can be found in Figure 1 of the Appendix

#### Method 2

Method 2 was used to determine the gas velocity through the test location using a Type-S pitot tube and an incline plane oil manometer. The values measured in Method 2, along with the measurements made in Methods 3B and 4, were used to calculate the volumetric flow rate through the test location. A diagram of the Method 2 apparatus is shown as part of the Methods 5B/202, 26A and 29 sampling trains in Figure 2, 3 and 4 of the Appendix.

The manometer was leveled and "zeroed" prior to each test run. The sample train was leak checked before and after each run by pressurizing the positive side, or "high" side, of the pitot tube and creating a deflection on the manometer of at least three inches  $H_2O$ . The leak check was considered valid if the manometer remained stable for 15 seconds. This procedure was repeated on the negative side by generating a vacuum of at least three inches  $H_2O$ . The velocity head pressure and gas temperature were then determined at each point specified in Method 1. The static pressure of the stack was measured using a water filled U-tube manometer. In addition, the barometric pressure was measured and recorded.

#### Method 3B

The carbon dioxide and oxygen content of the sample gas was determined at the test location using Method 3B. A gas sample was collected into a Tedlar bag from the dry gas meter exhaust of the Method 5B sampling train for the duration of each test run. Analysis was performed using an Orsat gas analyzer.

The gas analyzer was leak checked prior to analysis by raising the liquid levels in each pipette to a reference mark on the capillary tubes and then closing the pipette valves. The burette solution was then raised to bring the meniscus onto the graduated portion of the burette and the manifold valve was closed. After four minutes, the pipette meniscus did not fall below the reference mark and the burette meniscus did not fall by more than 0.2 percent, so the leak check was considered valid. The average of three gas analyses determined the carbon dioxide and oxygen contents.

The carbon dioxide content and oxygen content were used, along with the moisture content determined in Method 4, to calculate the gas stream molecular weight. The molecular weight was then used for the volumetric flow rate calculation. For these calculations, the balance of the gas stream was assumed to consist of nitrogen since other gas stream components are insignificant for the purposes of calculating molecular weight.

#### Method 4

The moisture content at the test location was determined using EPA Method 4 in conjunction with the Methods 5B/202, 26A and 29 test runs. A known volume of sample gas was withdrawn from each source and the moisture was condensed and measured. The



dry standard volume of the sample gas was then compared to the volume of moisture collected to determine the moisture content of the sample gas. A diagram of the Method 4 apparatus is shown as part of the Methods 5B/202, 26A and 29 sampling trains in Figure 2, 3B and 4 of the Appendix.

To condense the water vapor the gas sample passed through a series of impingers. The impingers were charged as outlined in each individual method. In all trains, the last impinger contained a known weight of silica gel to absorb any residual water vapor.

After the test run the sample train was leak checked at the highest vacuum encountered during the test run. The amount of water collected in the condenser system and the silica gel weight gain was determined gravimetrically. The net weight gain of water was converted to a volume of wet gas and then compared to the amount of dry gas sampled to determine the moisture content. The moisture content was used, along with the oxygen and carbon dioxide content determined by EPA Method 3B, for the calculation of the volumetric flow rate.

#### Method 5B/202

The PM concentrations were determined using EPA Methods 5B/202 in a combined sample train. In EPA Methods 5B/202, a sample of the gas stream was withdrawn isokinetically from the test location. Non-sulfuric FPM was collected in the nozzle, probe, connecting glassware and filter. CPM in the sample gas passed through the filter and collected in a gas condenser system. The weight of non-sulfuric FPM and CPM collected with the sample train combined with the volume of dry gas withdrawn from the stack was then used to calculate PM concentrations. A diagram of the Method 5B/202 sampling train is shown in Figure 2 of the Appendix.

To prevent contamination, all components of the sample trains were constructed of glass or Teflon with no metal connections. Prior to testing all the components of the Method 5B sampling train were cleaned using detergent and then rinsed with tap water, deionized water and lastly with acetone. For the Method 202 sampling train all the components were cleaned using detergent and then rinsed with tap water, deionized water, acetone and lastly with hexane. After drying, all components were sealed with parafilm or Teflon tape.

The Method 5B portion of the sampling train consisted of a glass nozzle, a Teflon lined sample probe and a glass fiber filter. The probe and filter were maintained at a temperature of 320°F (+/- 25°F). After exiting the Method 5B portion of the sampling system, the sample gas passed through an EPA Method 23 type glass coil condenser and then through a series of four (4) glass impingers. The condenser was cooled with a water recirculation pump that was placed in a water bath. The recirculation pump and coiled condenser are used to maintain the gas temperature between 65°F and 85°F at the exit of the CPM filter. Impingers 1 and 2 were initially empty. A Teflon fiber CPM filter followed impinger 2. Impinger 3 contained 100ml of water. The fourth impinger contained a known mass of silica gel to absorb any remaining water vapor. The dry gas



exiting the moisture condenser system then passed through a sample pump and a dry gas meter to measure the gas volume. After leaving the dry gas meter the sample stream passed through an orifice which was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane oil manometer.

Whatman 934-AH glass fiber filters were used as the substrate for the non-sulfuric PM sampling. The filter was loaded into a glass filter holder with a Teflon support screen that was cleaned and prepared in the same manner as the other components of the Method 5B sample train. Prior to the test run, the filter was baked at 320°F (+/- 25°F) for a minimum of two (2) hours then desiccated for at least 24 hours and then weighed to the nearest 0.0001gram (g) until a constant weight was achieved. The weight of the filter was considered to be constant when two consecutive weights taken at least six hours apart were within 0.0005g of each other.

The probe liner was thoroughly pre-cleaned with acetone and the probe wash was saved as a quality assurance check. The sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum of at least 15 inches Hg. A leak test was considered valid if the leak rate was below 0.02 cfm. When not in operation or inside the stack, the nozzle was sealed with Teflon tape.

The probe tip was placed at the first of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the oil manometer. Sample was withdrawn from the source at a rate such that the velocity at the opening of the nozzle matches the velocity of the stack gas at the sample point (isokinetically). During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was calculated based on the number of sample points and the run time. The gas velocity pressure, gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure and pump vacuum were recorded for each sample point.

After the test run the sample train was leak checked at the highest vacuum encountered during the test run. The sampling train was moved to the on-site lab and purged with zero grade nitrogen at a nominal flow rate of at least 14 liters per minute for a period of 60 minutes. The nozzle, probe and front half of the filter holder were washed with acetone and the rinse saved in a 250ml glass jar equipped with a Teflon lid. The glass fiber filter was removed from the filter holder, transferred to a Petri dish and sealed.

Upon completion of the purge, the contents of impingers one and two were transferred to a pre-cleaned 950 ml sample jar equipped with a Teflon lid. The condenser coil and all connecting glassware up to and including the front half of the CPM filter were rinsed twice with deionized ultra filtered (DUIF) water and added to the sample jar. An acetone rinse of the above glassware was performed and saved in a separate pre-cleaned 500ml sample jar equipped with a Teflon lid. Finally, two (2) rinses of the above components were performed with hexane and added to the acetone container. The CPM filter was removed from the filter holder and placed in a 20ml glass sample jar.



Analysis of all sample fractions was performed at the Airtech laboratory located in Bensenville, Illinois. The acetone rinses from the Method 5B portion of the sampling train were transferred to tared beakers, evaporated to dryness under ambient temperature and pressure conditions, baked for six (6) hours, desiccated for 24 hours and weighed to a constant weight. A weight was considered constant when the difference between two consecutive weights, taken a minimum of six hours apart, was less than or equal to 0.0005 grams. The weight gain of the probe rinses and glass fiber filter yield the total weight of filterable non-sulfuric acid particulate collected during sampling.

Inorganic extraction of the CPM filter was performed by placing the filter into an extraction tube with DIUF water and placing it into a sonication bath for a minimum of 2 minutes. This extraction was done a total of 3 times and the DIUF water used each time was added to the impinger water container. After inorganic extraction of the CPM filter, an organic extraction of the impinger water was performed. The entire contents of the impinger water sample fraction were placed in a separatory funnel. A 30 ml aliquot of Hexane was added to the funnel and the funnel contents were thoroughly mixed. The organic layer was then allowed to separate from the water and was decanted from the funnel into the acetone and hexane sample jar. This procedure was conducted three (3) times to complete the extraction.

The inorganic contents of the separatory funnel were then transferred into a beaker and evaporated down to not less than 10 ml final volume at an elevated temperature. The remaining liquid was evaporated to dryness at ambient temperature. The beaker was desiccated for 24 hours and then weighed to a constant weight.

Organic CPM extraction of the filter was performed by placing the inorganic extracted filter into an extraction tube with hexane and placing it into a sonication bath for a minimum of 2 minutes. This extraction was done a total of 3 times and the hexane used was added to the acetone/hexane container. The contents of this container was transferred into a beaker and evaporated to not less than 10 ml. The remaining fraction was then evaporated to dryness at ambient temperature and pressure. The beaker was desiccated for 24 hours and then weighed to a constant weight.

The weight differences for the organic and inorganic fractions were combined to determine the total condensible particulate collected. All fractions of the CPM analysis were adjusted for the appropriate blank values.

#### Method 19

The equations in EPA Method 19 were used to calculate the emission rates of various pollutants from the test location in units of pounds per million British thermal units (lb/mmBtu). The calculation was based on the oxygen content of the sample gas and an appropriate F factor, which is the ratio of combustion gas volumes to heat inputs.



#### Method 26A

EPA Method 26A was used to determine the concentrations of HCl and HF at the Stack Outlet test location. A sample of the gas stream was withdrawn isokinetically from the stack through a teflon lined probe, a Teflon mat filter and a series of glass impingers charged with an  $H_2SO_4$  solution. After each test run, the solution was recovered and analyzed using ion chromatography (IC). The total mass of each target constituent collected, combined with the volume of dry gas withdrawn from the test location was then used to calculate the in-stack concentration of each target constituent. A diagram of the sampling system may be found in Figure 3 of the Appendix.

To prevent contamination, all components of the sample train were constructed of glass or Teflon with no metal connections. Prior to testing the components were cleaned using detergent and then rinsed with tap water, deionized water and lastly with acetone. After drying, all components will be sealed with parafilm or Teflon tape.

The sample probe consisted of a heated Teflon liner and glass nozzle. Sample gas passed through the nozzle and probe assembly and then through a heated Teflon fiber filter. All heated components of the sampling train were maintained at a temperature of at least  $248^{\circ}$ F. After exiting the filter, the sample gas passed through a series of four glass impingers. The first impinge contained 50ml of a dilute sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) solution. The second and third impingers each contained 100ml of a dilute sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) solution. The fourth impinger contained a mass of silica gel to absorb any residual water vapor. After exiting the impinger system, the gas stream passed through a sample pump and into a dry gas meter, where the gas volume was measured. After leaving the dry gas meter, the sample stream passed through an orifice that was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline oil manometer.

The sampling train was assembled and leak checked prior to the test run. The leak check was performed by capping the probe nozzle and pulling a vacuum greater than the highest vacuum expected during the test run. A leak check was considered valid if the leak rate was below 0.02 cubic feet per minute.

The probe tip was then placed at the first of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the oil manometer. Sample was withdrawn from the source at a rate such that the velocity in the nozzle matched the velocity of the stack gas at the sample point (isokinetically). During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was calculated based on the number of sample points and the run time. Each test run was 120 minutes in duration such that a minimum sample volume of 2.5 dscm was collected. The gas velocity pressure, gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure and pump vacuum were recorded for each sample point.



After the test run the train was leak checked at the highest vacuum encountered during the test run. The impinger contents were recovered and stored in a 500ml high density, polyethylene sample jar. The impingers were rinsed three (3) times each with  $0.1N H_2SO_4$  with the rinses added to the sample jar. The resulting samples (including all rinses) were analyzed for HCl and HF using ion chromatography. Analysis for HCl and HF was performed at the Airtech laboratory located in Denver, Colorado.

#### Method 29

EPA Method 29 was used to determine the concentration of metallic hazardous air pollutants (HAP) at the test location. Metallic HAPs include antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), manganese (Mn), nickel (Ni) and selenium (Se). In EPA Method 29, sample gas was withdrawn isokinetically from the test location and the Metallic HAPs in the sample gas was collected in a glass lined probe, on a quartz fiber filter and in a series of chilled impingers charged with a metals absorbing solution. The mass of Metallic HAPs collected with the sample train, combined with the volume of dry gas withdrawn from the test location was then used to calculate the concentration of each Metallic HAPs. A diagram of the sampling system may be found in Figure 4 of the Appendix.

To prevent contamination, all components of the sample train were glass or Teflon with no metal connections. Prior to testing, the components were washed using detergent and then rinsed with tap water and rinsed again with deionized water. All glassware was soaked for a minimum of four (4) hours in a ten percent (10%) nitric acid (HNO<sub>3</sub>) solution. After soaking, the glassware was rinsed with de-ionized, ultra filtered (DIUF) water and finally with acetone. After drying, all components were sealed with parafilm.

The sample probe consisted of a heated Teflon liner and glass nozzle. Sample gas passed through the nozzle, the probe assembly, and then through a heated quartz fiber filter. The probe and filter were maintained at 248°F (+/- 25°F). After exiting the filter, the sample gas passed through a series of five glass impingers. The first impinge was initially empty. The second and third impingers were each loaded with 100ml of a 5 percent HNO<sub>3</sub>/10 percent H<sub>2</sub>O<sub>2</sub> solution. The fourth impinger was initially empty. The fifth impinger contained a known quantity of silica gel to absorb any residual water vapor. After exiting the impingers, the gas stream passed through a sample pump and into a dry gas meter, where the gas volume was measured. After leaving the dry gas meter, the sample stream passed through an orifice that was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline oil manometer.

Prior to the test run, the probe was thoroughly cleaned with acetone and a 0.1 N nitric acid solution and the probe washes saved as a quality assurance check. The sampling train was then assembled and leak checked by capping the probe nozzle and pulling a vacuum greater than the highest vacuum expected during the test run. A leak check was considered valid if the leak rate was below 0.02 cubic feet per minute.



The probe tip was then placed at the first of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the oil manometer. Sample was withdrawn from the source at a rate such that the velocity in the nozzle matched the velocity of the stack gas at the sample point (isokinetically). During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was calculated based on the number of sample points and the run time. Each test run was 120 minutes in duration. The gas velocity pressure, gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure and pump vacuum were recorded for each sample point.

After sampling, the sample train was transferred to the on-site laboratory for recovery. The filter was removed from the holder and placed in a glass petri dish. The front half of the sample train consisting of the nozzle, probe liner and filter holder inlet half was brushed with a non-metallic brush and rinsed with 0.1 N HNO<sub>3</sub>. These rinses were saved in separate 250ml trace clean amber glass sample jars. The contents of the first four impingers were recovered and saved in a 500ml Nalgene sample jar. The impingers and the filter outlet half were then rinsed with 0.1N HNO<sub>3</sub>, and the rinses added to the impinger sample jar. The contents of the fifth (silica gel) impinger was weighed for moisture weight gain and discarded.

The 0.1N HNO<sub>3</sub> front half rinse and filter were digested with HNO<sub>3</sub>. This fraction and the sample fraction acquired from the first three impingers were analyzed separately for all the metals listed using ICP and GFAA. Analysis of the samples was conducted by ElementOne located in Wilmington, North Carolina.

#### Method 30B

EPA Method 30B was used to determine the concentration of mercury at the test location. In EPA Method 30B, a sample of the effluent was withdrawn from the test location at a constant rate through an in-situ, glass 10 ml trap. The trap contained at least two stages of sorbent media designed to adsorb both  $Hg^2$  and  $Hg^0$  forms of vapor-phase mercury. The masses of mercury species collected with the traps was compared to the volume of dry gas sampled to calculate the mercury concentrations. A diagram of the sampling system may be found in Figure 5 of the Appendix.

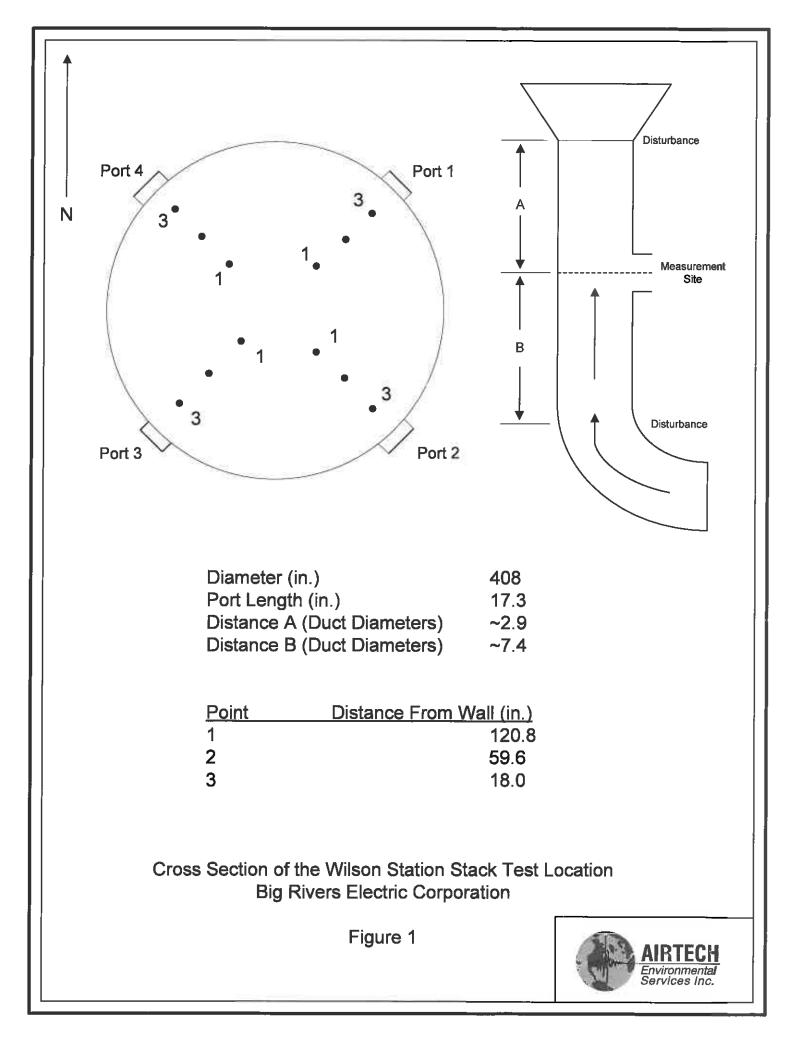
The sample traps for the Method 30B apparatus were quartz in construction. Traps were fitted to the end of the probe and contained in a steel heater block assembly designed to both prevent moisture condensation in the trap as well as provide for a constant temperature during sample collection. Sample gas passed through the trap and probe assembly, then through a condenser system comprised of a series of glass impingers. After exiting the condenser system, the sample gas passed through a metering system to determine the dry volume of gas sampled.

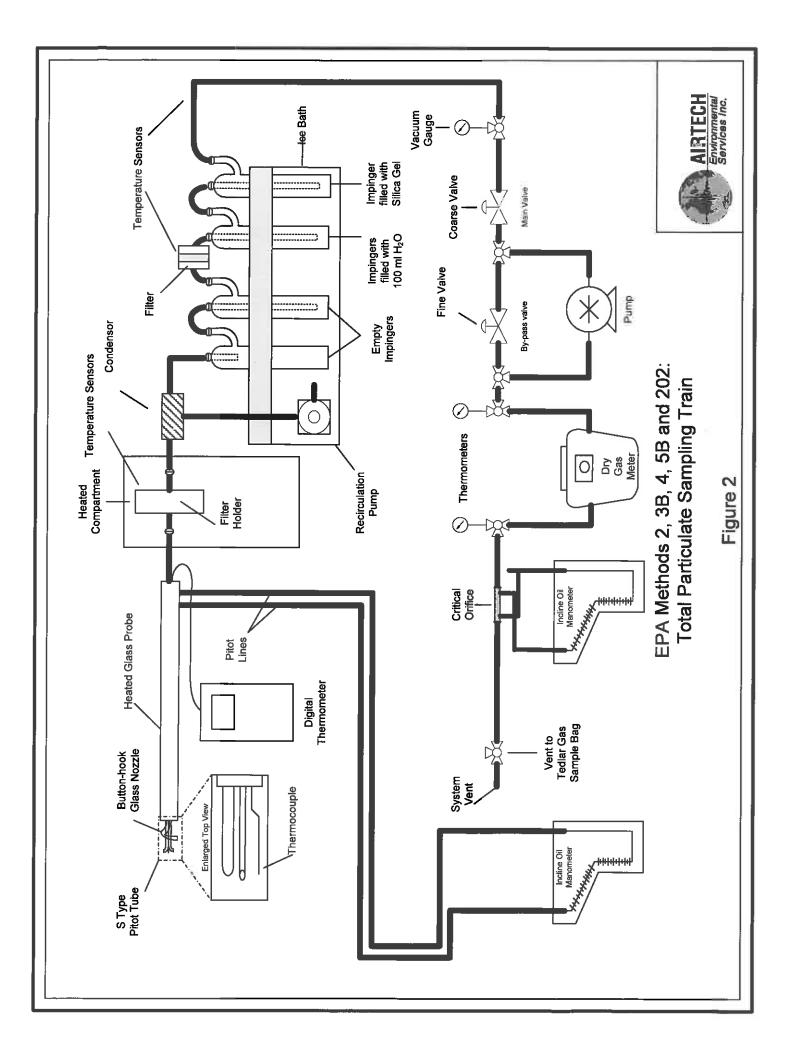
The volume of dry gas exiting the gas condenser system was measured with a dry gas meter. After leaving the dry gas meter the sample stream passed through an orifice, which was used to meter the flow rate through the sample train. The pressure drop across

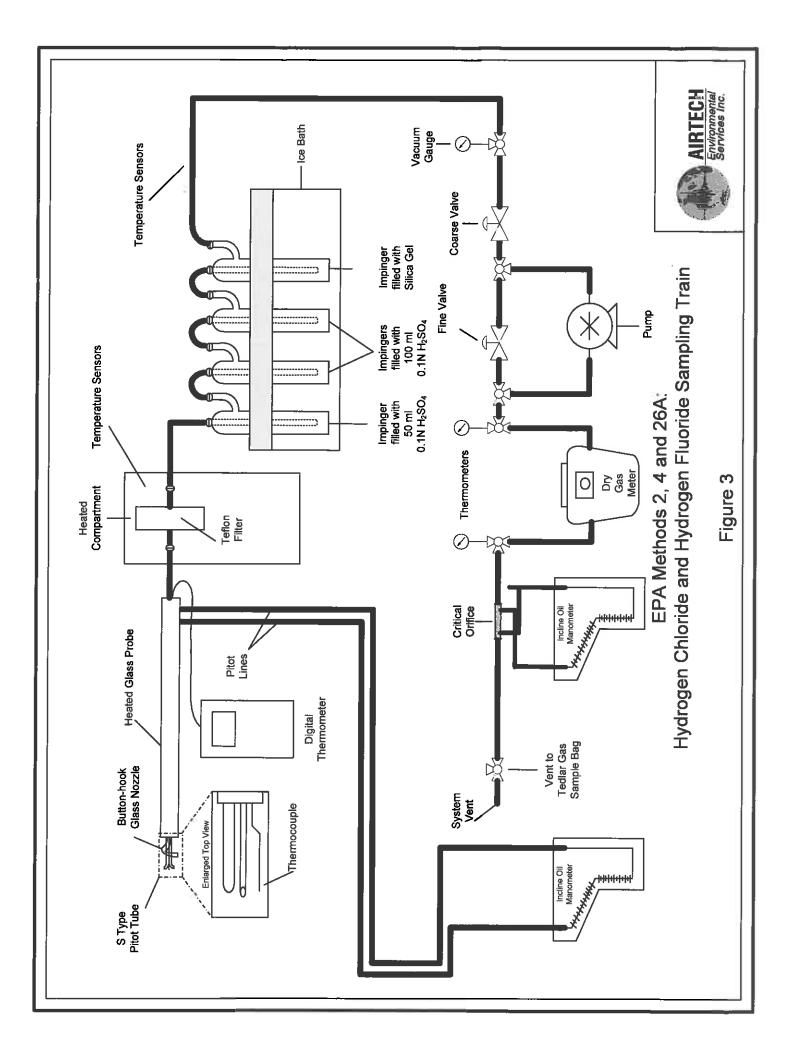


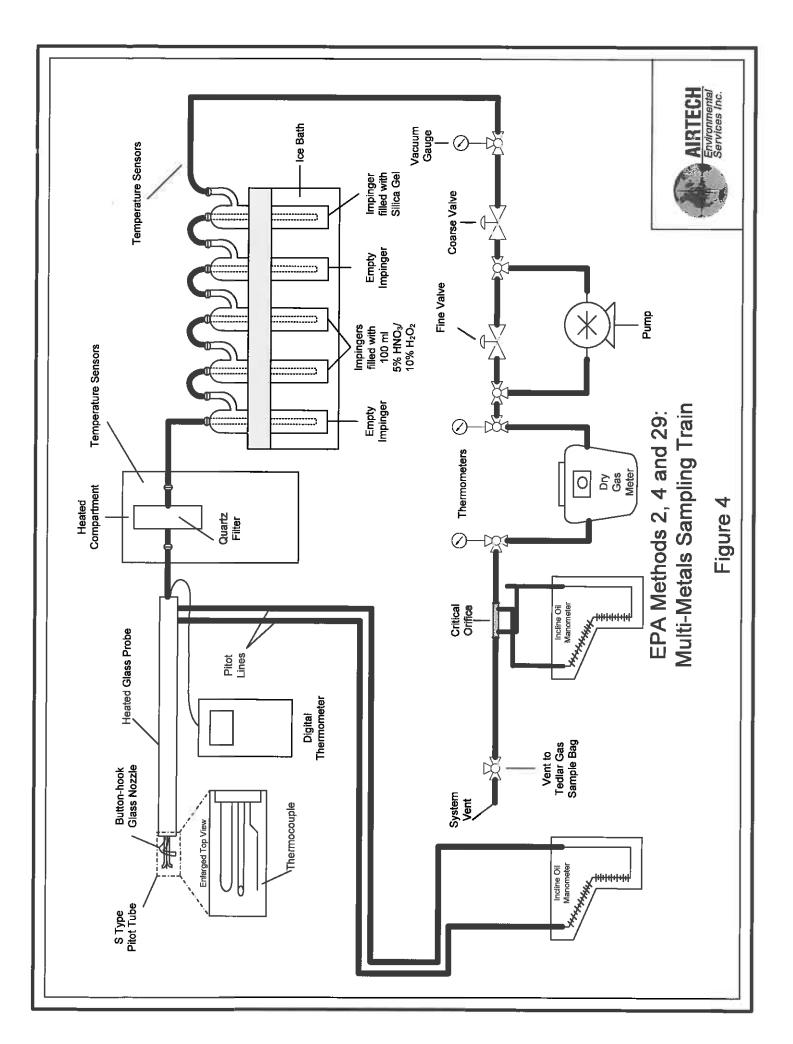
the orifice was measured with an incline plane oil manometer. The gas meter reading, gas meter inlet and outlet temperatures, gas meter static pressure and pump vacuum were recorded every five minutes during each test run.

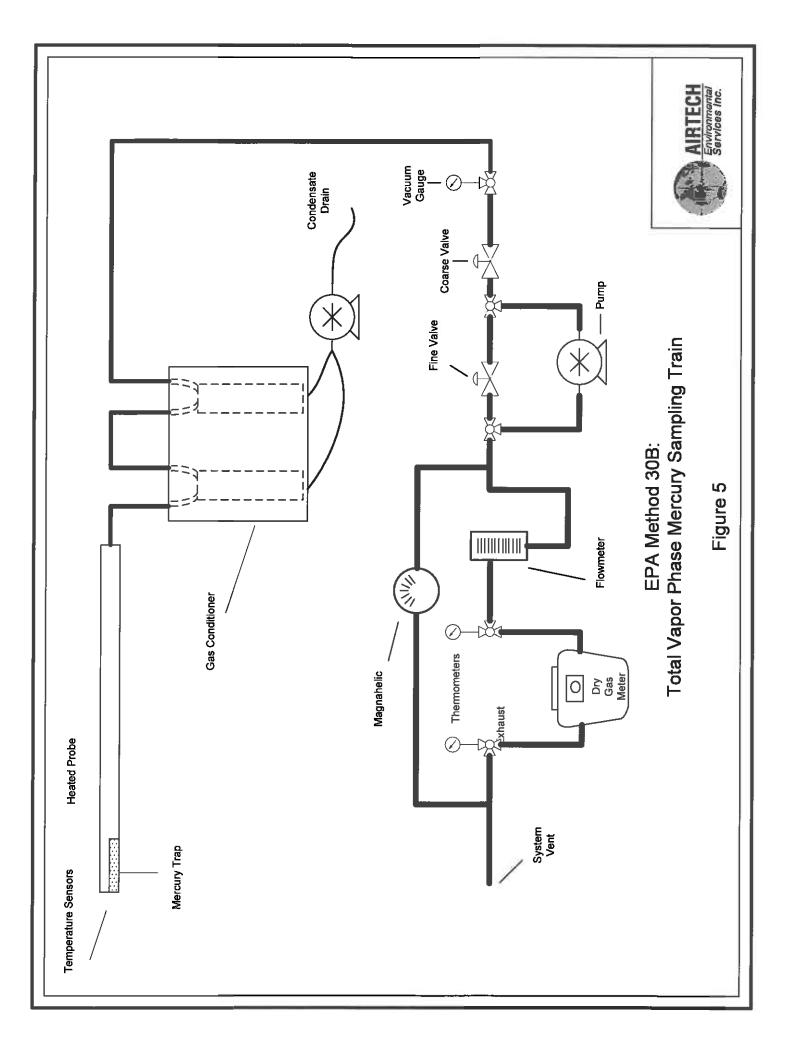
The sample train was leak checked prior to the test run by capping the trap tip and pulling a vacuum greater than the highest vacuum expected during the test run. A leak check was considered valid if the leak rate was less than four (4) percent of the average sampling rate. Sample gas was then withdrawn from the source at a constant rate such that the predetermined sample volume was collected. After the test run the probe was removed from the stack and the sample train was leak checked at the highest vacuum encountered during the test run.


Each test run consisted of a paired set of adsorbent tubes, one spiked with a known mass of Hg and the other unspiked. The spiked tube was a standard Method 30B sampling tube packed with carbon. The unspiked tube contained proprietary sections of adsorbent media designed to collect the different species of mercury separately. The unspiked tube contained two sections of adsorbent media designed to catch oxidized, vapor phase mercury. These sections were followed by two additional sections of adsorbent media designed to catch elemental, vapor phase mercury. All tube sections were analyzed separately using an Ohio Lumex, Model RA-915+ mercury analyzer. Quality assurance for the sample trains included spike recoveries, breakthrough checks and duplicate sample agreement. It should be noted that both spike recoveries and duplicate agreement QA is based on total mercury only.


Analysis of samples was performed at the Airtech Laboratory located in Denver, Colorado. Results for mercury are expressed in units of pounds per million British thermal units (lbs/mmBtu) and pounds per hour (lb/hr).





# Appendix


Figures











# Sample Calculations

# Area of Sample Location

$$A_{s} = \pi \times \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$
$$A_{s} = \pi \times \left(\frac{408}{2 \times 12}\right)^{2}$$
$$A_{s} = 908 ft^{2}$$

where:

| As | = area of sample location $(ft^2)$       |
|----|------------------------------------------|
| ds | = diameter of sample location (in)       |
| 12 | = conversion factor (in/ft)              |
| 2  | = conversion factor (diameter to radius) |

#### **Stack Pressure Absolute**

$$P_{a} = P_{b} + \frac{P_{s}}{13.6}$$

$$P_{a} = 29.36 + \frac{-0.2}{13.6}$$

$$P_{a} = 29.35 in.Hg$$

| Pa   | = stack pressure absolute (in. Hg)       |
|------|------------------------------------------|
| Pb   | = barometric pressure (in. Hg)           |
| Ps   | = static pressure (in. H <sub>2</sub> O) |
| 13.6 | = conversion factor (in. $H_2O/in. Hg$ ) |

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$
$$V_{m(std)} = \frac{17.64(65.94)(1.0052)\left(29.36 + \frac{1.78}{13.6}\right)}{(88.5 + 460)}$$
$$V_{m(std)} = 62.87scf$$

where:

| V <sub>m(std)</sub> | = volume of gas collected at standard temperature and pressure (scf) |
|---------------------|----------------------------------------------------------------------|
| $V_{m}$             | = volume of gas sampled at meter conditions $(ft^3)$                 |
| Yd                  | = gas meter correction factor (dimensionless)                        |
| Pb                  | = barometric pressure (in. Hg)                                       |
| $\Delta H$          | = average sample pressure (in. H <sub>2</sub> O)                     |
| $T_m$               | = average gas meter temperature (°F)                                 |
| 13.6                | = conversion factor (in. $H_2O/in$ . Hg)                             |
| 17.64               | = ratio of standard temperature over standard pressure (°R/in.Hg)    |
| 460                 | = conversion ( $^{\circ}F$ to $^{\circ}R$ )                          |
|                     |                                                                      |

# Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$V_{w(std)} = 0.04715 \times (V_{wc} + V_{wsg})$$
  

$$V_{w(std)} = 0.04715 \times (141.0 + 20.0)$$
  

$$V_{w(std)} = 7.59scf$$

| $V_{w(std)}$ | volume of water vapor at standard conditions (scf)                                     |
|--------------|----------------------------------------------------------------------------------------|
| $V_{wc}$     | = weight of liquid collected (g)                                                       |
| $V_{wsg}$    | = weight gain of silica gel (g)                                                        |
| 0.04715      | = volume occupied by one gram of water at standard temperature and pressure $(ft^3/g)$ |

#### Percent Moisture<sup>2</sup>

$$B_{ws} = 100 \times \left[ \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$
$$B_{ws} = 100 \times \left[ \frac{7.59}{(62.87 + 7.59)} \right]$$
$$B_{ws} = 10.8\%$$

where:

| $B_{ws}$            | = moisture content of the gas stream (%)                             |
|---------------------|----------------------------------------------------------------------|
| V <sub>m(std)</sub> | = volume of gas collected at standard temperature and pressure (scf) |
| $V_{w(std)}$        | = volume of water vapor at standard conditions (scf)                 |
| 100                 | = conversion factor                                                  |

# Molecular Weight of Dry Gas Stream<sup>3</sup>

$$M_{d} = \left(44 \times \frac{\% CO_{2}}{100}\right) + \left(32 \times \frac{\% O_{2}}{100}\right) + \left(28 \times \frac{(\% N_{2})}{100}\right)$$
$$M_{d} = \left(44 \times \frac{10.2}{100}\right) + \left(32 \times \frac{9.0}{100}\right) + \left(28 \times \frac{(80.8)}{100}\right)$$
$$M_{d} = 29.99 lb / lbmole$$

| dry gas stream (lb/lb-mole)           |
|---------------------------------------|
| of the dry gas stream (%)             |
| bon dioxide (lb/lb-mole)              |
| ry gas stream (%)                     |
| rgen (lb/lb-mole)                     |
| ry gas stream (%)                     |
| ogen and carbon monoxide (lb/lb-mole) |
|                                       |
|                                       |

 <sup>&</sup>lt;sup>2</sup> The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.
 <sup>3</sup> The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

#### Molecular Weight of Wet Gas Stream

$$\begin{split} M_s = & \left( M_d \times \left( 1 - \frac{B_{\text{\tiny NS}}}{100} \right) \right) + \left( 18 \times \frac{B_{\text{\tiny NS}}}{100} \right) \\ M_s = & \left( 29.99 \times \left( 1 - \frac{10.8}{100} \right) \right) + \left( 18 \times \frac{10.8}{100} \right) \\ M_s = & 28.70b / lbmole \end{split}$$

where:

| Ms                | = molecular weight of the wet gas stream (lb/lb-mole) |
|-------------------|-------------------------------------------------------|
| M <sub>d</sub>    | = molecular weight of the dry gas stream (lb/lb-mole) |
| $\mathbf{B}_{ws}$ | = moisture content of the gas stream (%)              |
| 18                | = molecular weight of water (lb/lb-mole)              |
| 100               | = conversion factor                                   |
|                   |                                                       |

#### **Velocity of Gas Stream**

$$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})\left(P_{b} + \frac{P_{s}}{13.6}\right)}}$$
$$V_{s} = 85.49 (0.84) (0.360) \sqrt{\frac{(124 + 460)}{(28.70)\left(29.36 + \frac{-0.2}{13.6}\right)}}$$

 $V_s = 21.5 ft / sec$ 

| $V_s$                                              | = average velocity of the gas stream (ft/sec)                                                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\mathrm{C}_\mathrm{p} \ \sqrt{\Delta \mathrm{P}}$ | = pitot tube coefficient dimensionless                                                                    |
| $\sqrt{\Delta P}$                                  | = average square root of velocity pressures (in. $H_2O$ ) <sup>1/2</sup>                                  |
| Ts                                                 | = average stack temperature (°F)                                                                          |
| $M_s$                                              | = molecular weight of the wet gas stream (lb/lb-mole)                                                     |
| Pb                                                 | = barometric pressure (in. Hg)                                                                            |
| Ps                                                 | = static pressure of gas stream (in. $H_2O$ )                                                             |
| 85.49                                              | = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[( $^{0}$ R)(in. H <sub>2</sub> O)]) <sup>1/2</sup> |
| 460                                                | = conversion ( $^{\circ}$ F to $^{\circ}$ R)                                                              |
| 13.6                                               | = conversion factor (in. $H_2O/in$ . Hg)                                                                  |

Volumetric Flow of Gas Stream - Actual Conditions  $Q_a = 60(V_s)(A_s)$   $Q_a = 60(21.5)(908)$  $Q_a = 1,171,044acfm$ 

where:

| $Q_a$            | = volumetric flow rate of the gas stream at actual conditions (acfm) |
|------------------|----------------------------------------------------------------------|
| $\mathbf{V}_{s}$ | = average velocity of the gas stream (ft/sec)                        |
| As               | = area of duct or stack ( $ft^2$ )                                   |
| 60               | = conversion factor (min/hr)                                         |

#### **Volumetric Flow of Gas Stream - Standard Conditions**

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$
$$Q_{std} = \frac{17.64(1,171,044)\left(29.36 + \frac{-0.2}{13.6}\right)}{(124 + 460)}$$
$$Q_{std} = 1,038,296scfm$$

where:

124

| $\mathbf{Q}_{\mathrm{std}}$ | = volumetric flow rate of the gas stream at standard conditions (scfm) |
|-----------------------------|------------------------------------------------------------------------|
| Qa                          | = volumetric flow rate of the gas stream at actual conditions (acfm)   |
| $T_s$                       | = average stack temperature (°F)                                       |
| Pb                          | = barometric pressure (in. Hg)                                         |
| $\mathbf{P_s}$              | = static pressure of gas stream (in. $H_2O$ )                          |
| 13.6                        | = conversion factor (in. $H_2O/in$ . Hg)                               |
| 17.64                       | = ratio of standard temperature over standard pressure (°R/in. Hg)     |
| 460                         | = conversion (°F to °R)                                                |
|                             |                                                                        |

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left( 1 - \frac{B_{ws}}{100} \right)$$
$$Q_{dstd} = 1,038,296 \left( 1 - \frac{10.8}{100} \right)$$
$$Q_{dstd} = 926,805 ds cfm$$

where:

| Q <sub>dstd</sub> | = volumetric flow rate of the gas stream at standard conditions, on a dry |
|-------------------|---------------------------------------------------------------------------|
|                   | basis (dscfm)                                                             |
| $Q_{\text{std}}$  | = volumetric flow rate of the gas stream at standard conditions (scfm)    |
| $B_{ws}$          | = moisture content of the gas stream (%)                                  |
| 100               | = conversion factor                                                       |

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$
$$A_n = \pi \times \left(\frac{0.355}{2 \times 12}\right)^2$$
$$A_n = 0.000687 ft^2$$

where:

$$A_n$$
 = area of nozzle (ft<sup>2</sup>)

$$d_n = diameter of nozzle (in)$$

12 = conversion factor (in/ft)

#### Percent Isokinetic

Percent Isokinetic  

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(124 + 460)(62.87)}{\left(29.36 + \frac{-0.2}{13.6}\right)(21.5)(6.87 \times 10^{-4})(90)\left(1 - \frac{10.8}{100}\right)}$$

$$I = 99.6\%$$

| Ι                         | = percent isokinetic (%)                                             |
|---------------------------|----------------------------------------------------------------------|
| Ts                        | = average stack temperature (°F)                                     |
| V <sub>m(std)</sub>       | = volume of gas collected at standard temperature and pressure (scf) |
| Pb                        | = barometric pressure (in. Hg)                                       |
| Ps                        | = static pressure of gas stream (in. $H_2O$ )                        |
| $V_s$                     | = average velocity of the gas stream (ft/sec)                        |
| $\mathbf{A}_{\mathbf{n}}$ | = cross sectional area of nozzle $(ft^2)$                            |
| Θ                         | = sample time (min)                                                  |
| $\mathbf{B}_{ws}$         | = moisture content of the gas stream (%)                             |
| 0.0945                    | = constant ( <sup>0</sup> R/in. Hg)                                  |
| 460                       | = conversion (°F to °R)                                              |
| 13.6                      | = conversion factor (in. $H_2O/in Hg$ )                              |
| 100                       | = conversion factor                                                  |
|                           |                                                                      |

#### Acetone Wash Blank-Particulate

$$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$
$$W_{a} = \frac{(0.0002)(190)}{200}$$
$$W_{a} = 0.0002g$$

where:

| Wa              | = particulate mass in acetone wash, blank corrected (g) |
|-----------------|---------------------------------------------------------|
| m <sub>ab</sub> | = mass collected, acetone wash blank (g)                |
| Vaw             | = volume of acetone wash (ml)                           |
| Vawb            | = volume of acetone wash blank (ml)                     |

#### Mass in Front Half, Acetone Blank Corrected

$$m_{f} = m_{fil} + (m_{a} - W_{a})$$

$$m_{f} = 0.0046 + (0.0250 - 0.0002)$$

$$m_{f} = 0.0295g$$
where:

where:

| $m_{f}$       | = mass in front half filter, and acetone wash, blank corrected (g) |
|---------------|--------------------------------------------------------------------|
| $m_{\rm fil}$ | = mass in front half filter (g)                                    |
| ma            | = mass in acetone wash (g)                                         |
| Wa            | = particulate mass in acetone wash blank (g)                       |

#### **Total Particulate Catch**

 $M_n = m_f + m_b$  $M_n = 0.0295 + 0.0093$  $M_n = 0.0387g$ 

where:

 $\begin{array}{ll} M_n & = \mbox{total mass catch (g)} \\ m_f & = \mbox{mass in front half filter, and acetone wash, blank corrected (g)} \\ m_b & = \mbox{mass in back half organic fraction, and inorganic fraction, blank} \\ & \mbox{corrected (g)} \end{array}$ 

#### Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0387)(15.43)}{62.87}$$

$$C_{gr/dscf} = 0.00950 grains / dscf$$

where:

| $C_{gr/dscf}$       | = particulate concentration (grains/dscf)              |
|---------------------|--------------------------------------------------------|
| M <sub>n</sub>      | = total particulate catch (g)                          |
| V <sub>m(std)</sub> | = volume of gas collected at standard conditions (scf) |
| 15.43               | = conversion factor (grains/g)                         |

#### Calculated F<sub>d</sub> Factor, dscf/mmBtu

$$F_{d} = K((K_{hd} \times H) + (K_{c} \times C) + (K_{s} \times S) + (K_{n} \times N) - (K_{o} \times O_{2})) / GCV_{w}$$
  

$$F_{d} = 10^{6} ((3.64 \times 4.53) + (1.53 \times 75.53) + (0.57 \times 4.11) + (0.14 \times 1.43) - (0.46 \times 5.15)) / 13,300$$
  

$$F_{d} = 9,942$$

where:

Fd = calculated fuel factor (dscf/mmBtu) = conversion factor (Btu/million Btu) Κ K<sub>hd</sub> = constant (scf/lb) = weight percent hydrogen in coal (%) Η = constant (scf/lb) Kc = weight percent carbon in coal (%) С Ks = constant (scf/lb) = weight percent sulfur in coal (%) S = constant (scf/lb) Kn = weight percent nitrogen in coal (%) Ν

 $K_o = constant (scf/lb)$ 

 $O_2$  = weight percent oxygen in coal (%)

 $GCV_w = gross calorific value of fuel, wet (Btu/lb)$ 

Total Particulate Emission Rate, lb/mmBtu<sup>4</sup>

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$
$$E_{PM} = \frac{(0.0387)(9,942)(20.9)}{(62.87)(453.6)(20.9 - 9.0)}$$
$$E_{PM} = 0.0237 lb / mmBtu$$

where:

| E <sub>PM</sub>     | = total particulate matter emission rate, (lb/mmBtu)                 |
|---------------------|----------------------------------------------------------------------|
| M <sub>n</sub>      | = total particulate catch (g)                                        |
| F <sub>d</sub>      | =fuel factor (dcsf/mmBtu)                                            |
| 20.9                | = oxygen content of ambient air (%)                                  |
| V <sub>m(std)</sub> | = volume of gas collected at standard temperature and pressure (scf) |
| 453.6               | = conversion factor (g/lb)                                           |
| $O_2$               | = oxygen content of the dry gas stream (%)                           |

# Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$
$$E_{lb/hr} = \frac{(0.0387)(926,805)(60)}{(62.87)(453.6)}$$
$$E_{lb/hr} = 75.5lb/hr$$

where:

| = particulate emission rate (lb/hr)                                         |
|-----------------------------------------------------------------------------|
| = total particulate catch (g)                                               |
| = volume of gas collected at standard conditions (scf)                      |
| = volumetric flow rate of the dry gas stream at standard conditions (dscfm) |
| = conversion factor (min/hr)                                                |
| = conversion factor (g/lb)                                                  |
|                                                                             |

\_\_\_\_\_

<sup>&</sup>lt;sup>4</sup> All particulate emission rates are calculated in a similar manner.

## Sample Calculations, Method 26A, Run 1

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)<sup>5</sup>

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^{3})(453.6)}$$
$$C_{HCl} = \frac{(0.335)}{(89.03)(10^{3})(453.6)}$$
$$C_{HCl} = 8.30 \times 10^{-9} \, lb \, / \, dscf$$

where:

| C <sub>HC1</sub>                | = concentration of hydrogen chloride in flue gas (lb/dscf)           |
|---------------------------------|----------------------------------------------------------------------|
| M <sub>HCl</sub>                | = mass of hydrogen chloride collected in sample (mg)                 |
| $V_{m(std)}$<br>10 <sup>3</sup> | = volume of gas collected at standard temperature and pressure (scf) |
| $10^{3}$                        | = conversion factor (mg/g)                                           |
| 453.6                           | = conversion factor $(g/lb)$                                         |

# Concentration of Hydrogen Chloride in Flue Gas (ppmdv)<sup>5</sup>

$$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^{6})}{(MW_{HCl})(V_{m(std)})(10^{3})(453.6)}$$
$$C_{ppmv} = \frac{(0.335)(385.3)(10^{6})}{(36.458)(89.03)(10^{3})(453.6)}$$
$$C_{ppmv} = 0.0877 \, ppmdv$$

| C <sub>ppmv</sub>               | = concentration of hydrogen chloride in flue gas (ppmv)              |
|---------------------------------|----------------------------------------------------------------------|
| M <sub>HCl</sub>                | = mass of hydrogen chloride collected in sample (mg)                 |
| 385.3                           | = = volume occupied by one pound gas at standard conditions          |
|                                 | (dscf/lbmole)                                                        |
| 10 <sup>6</sup>                 | = conversion factor (fraction to ppm)                                |
| MW <sub>HC1</sub>               | = molecular weight of hydrogen chloride (lb/lb-mole)                 |
| $V_{m(std)}$<br>10 <sup>3</sup> | = volume of gas collected at standard temperature and pressure (scf) |
| $10^{3}$                        | = conversion factor (mg/g)                                           |
| 453.6                           | = conversion factor (g/lb)                                           |

<sup>&</sup>lt;sup>5</sup> The HF concentrations were calculated in a similar manner.

Hydrogen Chloride Emission Rate, lb/mmBtu<sup>6</sup>

$$E_{HCl} = \frac{(C_{HCl})(F_d)(20.9)}{(20.9 - O_2)}$$
$$E_{HCl} = \frac{(8.30 \times 10^{-9})(9,942)(20.9)}{(20.9 - 9.00)}$$

 $E_{HCl} = 1.45 \times 10^{-4} lb / mmBtu$ 

where:

| E <sub>HC1</sub> | = hydrogen chloride emission rate, (lb/mmBtu) |
|------------------|-----------------------------------------------|
| $C_{HCl}$        | = hydrogen chloride concentration, (lb/dscf)  |
| F <sub>d</sub>   | =fuel factor (dcsf/mmBtu)                     |
| 20.9             | = oxygen content of ambient air (%)           |
| $O_2$            | = oxygen content of the dry gas stream (%)    |
|                  |                                               |

# Hydrogen Chloride Emission Rate<sup>6</sup>

 $E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$  $E_{HCl} = 8.30 \times 10^{-9} \times 949,661 \times 60$  $E_{HCl} = 0.473 lb / hr$ 

| E <sub>HCl</sub> | = hydrogen chloride emission rate, (lb/hr)                                  |
|------------------|-----------------------------------------------------------------------------|
| $C_{ppindv}$     | = hydrogen chloride concentration, dry basis, (ppmdv)                       |
| Qdstd            | = volumetric flow rate of the dry gas stream at standard conditions (dscfm) |
| MW               | = molecular weight of hydrogen chloride (lb/lbmole)                         |
| 60               | = conversion factor (min/hr)                                                |
| 385.3            | volume occupied by one pound gas at standard conditions (dscf/lbmole)       |
| $10^{6}$         | = conversion factor (fraction to ppm)                                       |

Concentration of Lead in Flue Gas, ug/dscm<sup>7</sup>

$$C_{ug \, dscm} = \frac{(M_{C})}{(V_{m(std)})} (35.31)$$
$$C_{ug \, dscm} = \frac{(2.51)}{(66.89)} (35.31)$$

$$C_{ug/dscm} = 1.32ug/dscm$$

where:

| Cug/dscm            | = concentration of lead in flue gas (ug/dscm)                       |
|---------------------|---------------------------------------------------------------------|
| M <sub>C</sub>      | = mass of lead in sample (ug)                                       |
| V <sub>m(std)</sub> | = volume of gas collected at standard temperature and pressure(scf) |
| 35.31               | = conversion factor $(ft^3/m^3)$                                    |

# Emission Rate of Lead in Flue Gas, lb/mmBtu<sup>8</sup>

$$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.31)(20.9 - \%O_2)(453.6)(10^6)}$$
$$E = \frac{(1.32)(9,942)(20.9)}{(35.31)(20.9 - 9.00)(453.6)(10^6)}$$
$$E = 1.44 \times 10^{-6} mg / dscm@7\%O_2$$

| E               | = lead emission rate (lb/mmBtu)            |
|-----------------|--------------------------------------------|
| Cug/dscm        | = lead concentration (ug/dscm)             |
| Fd              | =fuel factor (dcsf/mmBtu)                  |
| 35.31           | =conversion factor $(ft^3/m^3)$            |
| 20.9            | = oxygen content of ambient air (%)        |
| %O <sub>2</sub> | = oxygen content of the dry gas stream (%) |
| 453.6           | = conversion factor (g/lb)                 |
| $10^{6}$        | = conversion factor $(ug/g)$               |

 <sup>&</sup>lt;sup>7</sup> The concentrations of all MHs and mercury are calculated in a similar manner.
 <sup>8</sup> The emission rates of all MHs and mercury are calculated in a similar manner.

# Lead Emission Rate, lb/hr

$$E_{lb \ | \ hr} = \frac{\left(C_{ug \ | \ dscm}\right)\left(Q_{dstd}\right)(60)}{(35.31)\left(10^6\right)(453.6)}$$
$$E_{lb \ | \ hr} = \frac{(1.32)(940,465)(60)}{(35.31)\left(10^6\right)(453.6)}$$
$$E_{lb \ | \ hr} = 0.00467lb \ / \ hr$$

| E <sub>lb/hr</sub> | = lead emission rate (lb/hr)                                            |
|--------------------|-------------------------------------------------------------------------|
| Cug/dscm           | = lead concentration (ug/dscm)                                          |
| Qdstd              | = volumetric flow rate of dry gas stream at standard conditions (dscfm) |
| $10^{6}$           | = conversion factor (ug/g)                                              |
| 35.31              | = conversion factor ( $ft^3/m^3$ )                                      |
| 60.0               | = conversion factor (min/hr)                                            |
| 453.6              | = conversion factor (g/lb)                                              |

# Parameters

#### Method 5B/202 Parameters Wilson Stack

| EPA Methods 1-5B/202 Parameters                                                | Run 1     | Run 2     | Run 3     |
|--------------------------------------------------------------------------------|-----------|-----------|-----------|
| Date                                                                           | 9/28/2011 | 9/29/2011 | 9/29/2011 |
| Start Time                                                                     | 21:54     | 1:13      | 4:04      |
| Stop Time                                                                      | 23:43     | 3:24      | 5:54      |
| Dimensions of Sample Location, $D_s$ (in)                                      | 408       | 408       | 408       |
| Velocity Pressure, $\Delta P^{1/2}$ avg (in. H <sub>2</sub> O <sup>1/2</sup> ) | 0.360     | 0.363     | 0.367     |
| Barometric Pressure, P <sub>b</sub> (Inches Hg)                                | 29.36     | 29.36     | 29.36     |
| Static Pressure, P <sub>s</sub> (Inches H <sub>2</sub> O)                      | -0.2      | -0.2      | -0.2      |
| Pitot Coefficient, Cp                                                          | 0.84      | 0.84      | 0.84      |
| Sample Location Temperature, T <sub>s</sub> (°F)                               | 124       | 122       | 122       |
| Volume Metered, V <sub>m</sub> (ft <sup>3</sup> )                              | 65.94     | 66.01     | 67.26     |
| Meter Temperature, T <sub>m</sub> (°F)                                         | 88.5      | 87.2      | 92.8      |
| Average Sample Pressure, $\Delta H_{avg}$ (in. $H_2O$ )                        | 1.78      | 1.78      | 1.82      |
| Gas Meter Correction Factor, Yd                                                | 1.0052    | 1.0052    | 1.0052    |
| Carbon Dioxide (% dry)                                                         | 10.2      | 10.8      | 10.8      |
| Oxygen (% dry)                                                                 | 9.0       | 7.9       | 8.0       |
| Weight of Water Collected, Vwc (g)                                             | 141.0     | 155.0     | 164.0     |
| Silica Gel Net Weight, V <sub>wsg</sub> (g)                                    | 20.0      | 20.0      | 20.0      |
| Diameter of Nozzle, D <sub>n</sub> (in)                                        | 0.355     | 0.355     | 0.355     |
| Run Time, θ (minutes)                                                          | 90        | 90        | 90        |
| EPA METHODS 1-5B/202 RESULTS                                                   |           |           |           |
| Area of Sample Location, $A_s$ (ft <sup>2</sup> )                              | 908       | 908       | 908       |
| Stack Pressure Absolute (inches Hg)                                            | 29.35     | 29.35     | 29.35     |
| Volume Metered Standard, V <sub>m(std)</sub> (ft <sup>3</sup> )                | 62.87     | 63.08     | 63.63     |
| Volume of Water Vapor, V <sub>w(std)</sub> (ft <sup>3</sup> )                  | 7.59      | 8.25      | 8.68      |
| Percent Moisture, B <sub>ws</sub> (%)                                          | 10.8      | 11.6      | 12.0      |
| Moisture Saturation Point, B <sub>wsat</sub> (%)                               | 13.0      | 12.5      | 12.5      |
| Dry Molecular Weight, M <sub>d</sub> (Ibs/Ib mole)                             | 29.99     | 30.05     | 30.05     |
| Wet Molecular Weight, M <sub>s</sub> (lbs/lb mole)                             | 28.70     | 28.65     | 28.60     |
| Gas Velocity, V <sub>s</sub> (ft/sec)                                          | 21.5      | 21.7      | 21.9      |
| Average Flowrate, Q <sub>a</sub> (acfm)                                        | 1,171,044 | 1,182,162 | 1,195,132 |
| Standard Flowrate, Q <sub>std</sub> (scfm)                                     | 1,038,296 | 1,050,704 | 1,062,688 |
| Dry Standard Flowrate, Q <sub>dstd</sub> (dscfm)                               | 926,805   | 929,537   | 935,550   |
| Area of Nozzie, A <sub>n</sub> (ft <sup>2</sup> )                              | 0.000687  | 0.000687  | 0.000687  |
| sokinetics (%)                                                                 | 99.6      | 99.7      | 99.9      |
| Front-Half Particulate (g)                                                     | 0.0295    | 0.0433    | 0.0417    |
| Concentration (grains/dscf)                                                    | 0.00723   | 0.0106    | 0.0101    |
| Emission Rate, Fd (lb/mmBtu)                                                   | 0.0180    | 0.0240    | 0.0231    |
| Emission Rate (Ib/hr)                                                          | 57.4      | 84.4      | 81.1      |
| Condensible Particulate (g)                                                    | 0.0093    | 0.0100    | 0.0091    |
|                                                                                | 0.00227   | 0.00245   | 0.00222   |
| Concentration (grains/dscr)                                                    |           |           |           |
| Concentration (grains/dscf)<br>Emission Rate, Fd (lb/mmBtu)                    | 0.00566   | 0.00554   | 0.00506   |

**Big Rivers Electric** 

#### Method 26A Parameters Wilson Stack

| EPA Methods 1-4 Parameters                                                     | Run 1          | Run 2     | Run 3     |
|--------------------------------------------------------------------------------|----------------|-----------|-----------|
| Date                                                                           | 9/28-9/29/2011 | 9/29/2011 | 9/29/2011 |
| Start Time                                                                     | 21:54          | 1:41      | 4:23      |
| Stop Time                                                                      | 0:43           | 3:53      | 6:31      |
| Dimensions of Sample Location, $D_s$ (in)                                      | 408            | 408       | 408       |
| Velocity Pressure, $\Delta P^{1/2}$ avg (in. H <sub>2</sub> O <sup>1/2</sup> ) | 0.376          | 0.357     | 0.349     |
| Barometric Pressure, Pb (Inches Hg)                                            | 29.36          | 29.36     | 29.36     |
| Static Pressure, P <sub>s</sub> (Inches H <sub>2</sub> O)                      | -0.2           | -0.2      | -0.2      |
| Pitot Coefficient, C <sub>p</sub>                                              | 0.84           | 0.84      | 0.84      |
| Sample Location Temperature, T <sub>s</sub> (°F)                               | 125            | 125       | 125       |
| Volume Metered, V <sub>m</sub> (ft <sup>3</sup> )                              | 92.29          | 89.56     | 87.02     |
| Meter Temperature, T <sub>m</sub> (°F)                                         | 85.2           | 89.0      | 88.5      |
| Average Sample Pressure, $\Delta H_{avg}$ (in. $H_2O$ )                        | 2.16           | 1.85      | 1.75      |
| Gas Meter Correction Factor, Yg                                                | 1.0101         | 1.0101    | 1.0101    |
| Carbon Dioxide (% dry)                                                         | 10.2           | 10.8      | 10.8      |
| Oxygen (% dry)                                                                 | 9.0            | 7.9       | 8.0       |
| Weight of Water Collected, Vwc (g)                                             | 256.0          | 182.0     | 223.0     |
| Silica Gel Net Weight, V <sub>wsg</sub> (g)                                    | 24.0           | 29.0      | 23.0      |
| Diameter of Nozzle, D <sub>n</sub> (in)                                        | 0.365          | 0.365     | 0.365     |
| Run Time, θ (minutes)                                                          | 120            | 120       | 120       |
| EPA METHODS 1-4 RESULTS                                                        |                |           |           |
| Area of Sample Location, A <sub>s</sub> ( <b>ft</b> <sup>2</sup> )             | 908            | 908       | 908       |
| Stack Pressure Absolute (inches Hg)                                            | <b>29.3</b> 5  | 29.35     | 29.35     |
| Volume Metered Standard, V <sub>m(std)</sub> (ft <sup>3</sup> )                | 89.03          | 85.73     | 83.36     |
| Volume of Water Vapor, V <sub>w(std)</sub> (ft <sup>3</sup> )                  | 13.20          | 9.95      | 11.60     |
| Percent Moisture, B <sub>ws</sub> (%)                                          | 12.9           | 10.4      | 12.2      |
| Moisture Saturation Point, B <sub>wsat</sub> (%)                               | 13.4           | 13.6      | 13.5      |
| Dry Molecular Weight, M <sub>d</sub> (lbs/lb mole)                             | 29.99          | 30.05     | 30.05     |
| Wet Molecular Weight, M <sub>s</sub> (lbs/lb mole)                             | 28.44          | 28.79     | 28.58     |
| Gas Velocity, V <sub>s</sub> (ft/sec)                                          | 22.6           | 21.4      | 21.0      |
| Average Flowrate, Q <sub>a</sub> (acfm)                                        | 1,231,688      | 1,163,132 | 1,141,685 |
| Standard Flowrate, Q <sub>std</sub> (scfm)                                     | 1,090,043      | 1,028,785 | 1,010,247 |
| Dry Standard Flowrate, Q <sub>dstd</sub> (dscfm)                               | 949,661        | 922,181   | 887,205   |
| Area of Nozzle, $A_n$ (ft <sup>2</sup> )                                       | 0.000727       | 0.000727  | 0.000727  |
| sokinetics (%)                                                                 | 97.7           | 96.9      | 97.9      |
| Hydrogen Chloride (mg)                                                         | 0.335          | 0.231     | 0.249     |
| Concentration (Ib/dscf)                                                        | 8.30E-09       | 5.94E-09  | 6.59E-09  |
| Concentration (ppmdv)                                                          | 0.0877         | 0.0628    | 0.0696    |
| Emíssion Rate (lb/mmBtu)                                                       | 1.45E-04       | 9.42E-05  | 1.05E-04  |
| Emission Rate (Ib/hr)                                                          | 0.473          | 0.329     | 0.351     |
| fydrogen Fluoride (mg)                                                         | 0.155          | 0.137     | 0.143     |
| Concentration (Ib/dscf)                                                        | 3.84E-09       | 3.52E-09  | 3.78E-09  |
|                                                                                | 0.0739         | 0.0679    | 0.0728    |
| Joncentration (ppmdv)                                                          | 0.0103         |           |           |
| Concentration (ppmdv)<br>Emission Rate (Ib/mmBtu)                              | 6.70E-05       | 5.58E-05  | 6.04E-05  |

**Big Rivers Electric** 

## Method 29 Parameters Wilson Stack

Project No. 3648

| EPA Methods 1-4 Parameters                                                     | Run 1          | Run 2     | Run 3     |
|--------------------------------------------------------------------------------|----------------|-----------|-----------|
| Date                                                                           | 9/28-9/29/2011 | 9/29/2011 | 9/29/2011 |
| Start Time                                                                     | 21:54          | 1:41      | 4:19      |
| Stop Time                                                                      | 0:31           | 3:53      | 6:31      |
| Dimensions of Sample Location, $D_s$ (in)                                      | 408            | 408       | 408       |
| Velocity Pressure, $\Delta P^{1/2}$ avg (in. H <sub>2</sub> O <sup>1/2</sup> ) | 0.374          | 0.369     | 0.374     |
| Barometric Pressure, P <sub>b</sub> (Inches Hg)                                | 29.36          | 29.36     | 29.36     |
| Static Pressure, P <sub>s</sub> (Inches H <sub>2</sub> O)                      | -0.2           | -0.2      | -0.2      |
| Pitot Coefficient, Cp                                                          | 0.84           | 0.84      | 0.84      |
| Sample Location Temperature, T <sub>s</sub> (°F)                               | 125            | 124       | 125       |
| Volume Metered, V <sub>m</sub> (ft <sup>3</sup> )                              | 71.37          | 69.90     | 70.59     |
| Meter Temperature, T <sub>m</sub> (°F)                                         | 92.8           | 91.8      | 92.3      |
| Average Sample Pressure, $\Delta H_{avg}$ (in. H <sub>2</sub> O)               | 1.12           | 1.07      | 1.10      |
| Gas Meter Correction Factor, Y <sub>d</sub>                                    | 0.9976         | 0.9976    | 0.9976    |
| Carbon Dioxide (% dry)                                                         | 10.2           | 10.8      | 10.8      |
| Oxygen (% dry)                                                                 | 9.0            | 7.9       | 8.0       |
| Weight of Water Collected, Vwc (g)                                             | 203.0          | 182.0     | 187.0     |
| Silica Gel Net Weight, V <sub>wsg</sub> (g)                                    | 14.0           | 14.0      | 8.0       |
| Diameter of Nozzle, D <sub>n</sub> (in)                                        | 0.312          | 0.312     | 0.312     |
| Run Time, $\theta$ (minutes)                                                   | 120            | 120       | 120       |
| EPA METHODS 1-4 RESULTS                                                        |                |           |           |
| Area of Sample Location, A <sub>s</sub> (ft <sup>2</sup> )                     | 908            | 908       | 908       |
| Stack Pressure Absolute (inches Hg)                                            | 29.35          | 29.35     | 29.35     |

| Area of Sample Location, A <sub>s</sub> (ft <sup>2</sup> )      | 908       | 908       | 908       |  |
|-----------------------------------------------------------------|-----------|-----------|-----------|--|
| Stack Pressure Absolute (inches Hg)                             | 29.35     | 29.35     | 29.35     |  |
| Volume Metered Standard, V <sub>m(std)</sub> (ft <sup>3</sup> ) | 66.89     | 65.62     | 66.21     |  |
| Volume of Water Vapor, V <sub>w(std)</sub> (ft <sup>3</sup> )   | 10.23     | 9.24      | 9.19      |  |
| Percent Moisture, B <sub>ws</sub> (%)                           | 13.3      | 12.3      | 12.2      |  |
| Moisture Saturation Point, B <sub>wsat</sub> (%)                | 13.3      | 13.2      | 13.3      |  |
| Dry Molecular Weight, M <sub>d</sub> (lbs/lb mole)              | 29.99     | 30.05     | 30.05     |  |
| Wet Molecular Weight, M <sub>s</sub> (lbs/lb mole)              | 28.40     | 28.56     | 28.58     |  |
| Gas Velocity, V <sub>s</sub> (ft/sec)                           | 22.5      | 22.1      | 22.4      |  |
| Average Flowrate, Q <sub>a</sub> (acfm)                         | 1,223,850 | 1,204,343 | 1,222,926 |  |
| Standard Flowrate, Q <sub>std</sub> (scfm)                      | 1,083,879 | 1,066,907 | 1,082,906 |  |
| Dry Standard Flowrate, Q <sub>dstd</sub> (dscfm)                | 940,465   | 935,578   | 951,251   |  |
| Area of Nozzle, A <sub>n</sub> (ft <sup>2</sup> )               | 0.000531  | 0.000531  | 0.000531  |  |
| Isokinetics (%)                                                 | 101.4     | 100.0     | 99.3      |  |
|                                                                 |           |           |           |  |

## Method 29 Parameters Wilson Stack

| Metals Lab Data Entry (μg) | Blank | Run 1      | Run 2      | Run 3      |
|----------------------------|-------|------------|------------|------------|
| Front Half (ug)            |       | 0.262      | 1.42       | 0.202      |
| Back Half (ug)             |       | 0.270      | 0.138      | 0.103      |
| Antimony - Sb              |       | 0.532      | 1.55       | 0.305      |
| Concentration (ug/dscm)    |       | 0.281      | 0.835      | 0.163      |
| Emission Rate (Ib/mmBtu)   |       | 3.06E-07   | 8.27E-07   | 1.62E-07   |
| Emission Rate (lb/hr)      |       | 0.000989   | 0.00293    | 0.000580   |
| Front Half (ug)            |       | 2.43       | 2.13       | 2.40       |
| Back Half (ug)             |       | 1.38       | 0.592      | 0.305      |
| Arsenic - As               |       | 3.81       | 2.72       | 2.71       |
| Concentration (ug/dscm)    |       | 2.01       | 1.46       | 1.44       |
| Emission Rate (lb/mmBtu)   |       | 2.19E-06   | 1.45E-06   | 1.44E-06   |
| Emission Rate (lb/hr)      |       | 0.00709    | 0.00512    | 0.00514    |
| Front Half (ug)            |       | <0.025     | <0.025     | <0.025     |
| Back Half (ug)             |       | <0.025     | <0.025     | <0.025     |
| Berylium - Be              |       | <0.0500    | <0.0500    | <0.0500    |
| Concentration (ug/dscm)    |       | <0.0264    | <0.0269    | <0.0267    |
| Emission Rate (lb/mmBtu)   |       | <2.88E-08  | <2.66E-08  | <2.66E-08  |
| Emission Rate (lb/hr)      |       | <0.0000930 | <0.0000943 | <0.0000950 |
| Front Half (ug)            |       | 0.228      | 0.112      | <0.1       |
| Back Half (ug)             |       | <0.1       | 2.26       | <0.1       |
| Cadmium - Cd               |       | 0.328      | 2.37       | <0.200     |
| Concentration (ug/dscm)    |       | 0.173      | 1.28       | <0.107     |
| Emission Rate (lb/mmBtu)   |       | 1.89E-07   | 1.26E-06   | <1.06E-07  |
| Emission Rate (lb/hr)      |       | 0.000610   | 0.00447    | <0.000380  |
| Front Half (ug)            |       | 32.9       | 8.72       | 4.99       |
| Back Half (ug)             |       | 2.22       | 1.79       | 0.943      |
| Chromium - Cr              |       | 35.1       | 10.5       | 5.93       |
| Concentration (ug/dscm)    |       | 18.5       | 5.65       | 3.16       |
| Emission Rate (lb/mmBtu)   |       | 2.02E-05   | 5.59E-06   | 3.15E-06   |
| Emission Rate (lb/hr)      |       | 0.0653     | 0.0198     | 0.0113     |
| Front Half (ug)            |       | 0.692      | 0.320      | 0.190      |
| Back Half (ug)             |       | 0.597      | 0.398      | <0.2       |
| Cobalt - Co                |       | 1.29       | 0.717      | 0.383      |
| Concentration (ug/dscm)    |       | 0.680      | 0.386      | 0.204      |
| Emission Rate (lb/mmBtu)   |       | 7.42E-07   | 3.82E-07   | 2.04E-07   |
| Emission Rate (lb/hr)      |       | 0.00240    | 0.00135    | 0.000728   |

**Big Rivers Electric** 

## Method 29 Parameters Wilson Stack

| Metals Lab Data Entry (μg) | Blank | Run 1    | Run 2    | Run 3    |
|----------------------------|-------|----------|----------|----------|
| Front Half (ug)            |       | 1.36     | 0.927    | 0.825    |
| Back Half (ug)             |       | 1.15     | 5.68     | 0.552    |
| Lead - Pb                  |       | 2.51     | 6.61     | 1.38     |
| Concentration (ug/dscm)    |       | 1.32     | 3.56     | 0.734    |
| Emission Rate (lb/mmBtu)   |       | 1.44E-06 | 3.52E-06 | 7.32E-07 |
| Emission Rate (lb/hr)      |       | 0.00467  | 0.0125   | 0.00262  |
| Front Half (ug)            |       | 10.3     | 4.21     | 2.81     |
| Back Half (ug)             |       | 2.62     | 4.32     | 2.15     |
| Manganese - Mn             |       | 12.9     | 8.53     | 4.96     |
| Concentration (ug/dscm)    |       | 6.82     | 4.59     | 2.65     |
| Emission Rate (lb/mmBtu)   |       | 7.43E-06 | 4.54E-06 | 2.64E-06 |
| Emission Rate (Ib/hr)      |       | 0.0240   | 0.0161   | 0.00943  |
| Front Half (ug)            |       | 123      | 69.5     | 25.4     |
| Back Half (ug)             |       | 3.61     | 2.44     | 1.75     |
| Nickel - Ni                |       | 127      | 71.9     | 27.2     |
| Concentration (ug/dscm)    |       | 66.8     | 38.7     | 14.5     |
| Emission Rate (lb/mmBtu)   |       | 7.28E-05 | 3.83E-05 | 1.44E-05 |
| Emission Rate (lb/hr)      |       | 0.235    | 0.136    | 0.0516   |
| Front Half (ug)            |       | 38.5     | 30.7     | 44.3     |
| Back Half (ug)             |       | 37.7     | 16.6     | 9.00     |
| Selenium - Se              |       | 76.2     | 47.3     | 53.3     |
| Concentration (ug/dscm)    |       | 40.2     | 25.4     | 28.4     |
| Emission Rate (lb/mmBtu)   |       | 4.38E-05 | 2.52E-05 | 2.83E-05 |
| Emission Rate (lb/hr)      |       | 0.142    | 0.0891   | 0.101    |

**Big Rivers Electric** 

## Method 30B Data Entry Wilson Stack

| Parameters                                                 | Run 1          | Run 2        | Run 3   |
|------------------------------------------------------------|----------------|--------------|---------|
| Date                                                       | 9/28-9/29/2011 | 9/29/11      | 9/29/11 |
| Start Time                                                 | 22:59          | 2:18         | 5:09    |
| Stop Time                                                  | 0:29           | 3:48         | 6:39    |
| Barometric Pressure, P <sub>b</sub> (Inches Hg)            | 29.36          | 29.36        | 29.36   |
| Un-Spiked                                                  |                |              |         |
| Volume Metered, V <sub>m</sub> (L)                         | 27.39          | 27.69        | 27.29   |
| Meter Temperature, T <sub>m</sub> (°F)                     | 99.4           | 97.6         | 98.4    |
| Gas Meter Correction Factor, Y <sub>d</sub>                | 0.9994         | 0.9994       | 0.9994  |
| Run Time, θ (minutes)                                      | 90             | 90           | 90      |
| Spiked/Paired                                              |                |              |         |
| Volume Metered, V <sub>m</sub> (L)                         | 27.56          | 27.17        | 27.28   |
| Meter Temperature, T <sub>m</sub> (°F)                     | 99.4           | 97.6         | 98.4    |
| Gas Meter Correction Factor, Y <sub>d</sub>                | 1.0017         | 1.0017       | 1.0017  |
| Run Time, θ (minutes)                                      | 90             | 90           | 90      |
| Oxidized Mercury Collected Un-Spiked, m (ng)               | 5.17           | 7.45         | 4.41    |
| Elemental Mercury Collected Un-Spiked, m (ng)              | 21.7           | 27.6         | 23.2    |
| Total Mercury Collected Un-Spiked, m (ng)                  | 26.9           | 35.0         | 27.7    |
| Total Mercury Collected Spiked/Paired, m (ng)              | 44.4           | 50.0         | 52.3    |
| Mass of Mercury Spiked, S (ng)                             | 20.0           | 20.0         | 20.0    |
| RESULTS                                                    |                |              |         |
| Volume Metered Un-Spiked, V <sub>m(std)</sub> (L)          | 25.34          | 25.71        | 25.29   |
| Oxidized Mercury Concentration Un-spiked Train, (µg/dscm)  | 0.204          | 0.290        | 0.174   |
| Elemental Mercury Concentration Un-spiked Train, (µg/dscm) | 0.856          | 1. <b>07</b> | 0.917   |
| Total Mercury Concentration Un-spiked Train, (µg/dscm)     | 1.06           | 1.36         | 1.10    |
| Volume Metered Spiked/Paired, V <sub>m(std)</sub> (L)      | 25.56          | 25.28        | 25.34   |
| Concentration Spiked/Paired Train, (µg/dscm)               | 1.74           | 1.98         | 2.06    |
| Concentration Spiked Train Less Spike, (µg/dscm)           | 0.955          | 1. <b>19</b> | 1.27    |
| Concentration Recovered Spike, (µg/dscm)                   | 0.676          | 0.616        | 0.969   |
| Recovery, R (%)                                            | 86.4           | 77.9         | 123     |
| Relative Deviation, RD (%)                                 | 5.30           | 6.86         | 7.57    |
| Difference (µg/dscm)                                       | 0.107          | 0.175        | 0.179   |
| Average Result (ug/dscm)                                   | 1.01           | 1.27         | 1.18    |
| Average Recovery (%)                                       | 95.7           |              |         |

| Fd Parameters          | Sample 1 | Sample 2 | Sample 3 |
|------------------------|----------|----------|----------|
| Hydrogen (%)           | 4.53     | 4.66     | 4.47     |
| Carbon (%)             | 75.53    | 75.52    | 76.28    |
| Sulfur (%)             | 4.11     | 4.10     | 4.05     |
| Nitrogen (%)           | 1.43     | 1.53     | 1.53     |
| Oxygen (%)             | 5.15     | 5.65     | 5.85     |
| Heating Value (Btu/lb) | 13,300   | 13,468   | 13,475   |
| Result                 | Sample 1 | Sample 2 | Sample 3 |
| Fd (dscf/mmBtu)        | 9,942    | 9,835    | 9,856    |

Field Data Printouts

| Project Number | 3648       |
|----------------|------------|
| Clien          | Big Rivers |
| Plani          | Wilson     |
| Location       | Stack      |
| Date           | 9/28/2011  |
| Nieter ID      | M14        |
| Y <sub>6</sub> | 1.0052     |
| Pitot Cp       | 0.84       |

| Nozzle Diameter (m)        | 0.355    |
|----------------------------|----------|
| Filter ID                  | 12223    |
| Тлан Түре                  | Impinger |
| Train ID                   | IBA      |
| P <sub>L</sub> (Inches Hg) | 29.36    |
| P_(linched H_O)            | -0.2     |
| Start Time                 | 21:54    |
| Stop Time                  | 23:43    |

| Circular?    | x   |
|--------------|-----|
| Rectangular? |     |
| Diameter     | 408 |
| Langth       |     |
| Width        |     |

| Mousiure      | Final Wi       | Tare Vri<br>(g) | Net Wi |
|---------------|----------------|-----------------|--------|
| Impinger 1    | 714.0          | 574.0           | 140 0  |
| Impluge 2     | 536.0          | 533.0           | 30     |
| Implager 3    | <u>73</u> 0.0  | 732.0           | -20    |
| •*            |                |                 |        |
| Silica Gel    | 881.0          | 861.0           | 20.0   |
|               | ater Collected |                 | 141 0  |
| Silica Gel Ne | t Weight V     | (g)             | 20.0   |

| ીં કર્યો | %CO2 | 50CO2+%O2 | %O,  |
|----------|------|-----------|------|
| Trial 1  | 10.2 | 19.2      | 9.0  |
| Tual 2   | 10.2 | 19.2      | 9.0  |
| Trial S  | 10.2 | 19.2      | 9.0  |
| Average  | 10.2 | NA ]      | \$.0 |

| Traverse<br>Poini | win/Fi<br>7.5<br>Elapsed<br>Time | Velocity<br>Presoure<br>∆ P<br>(in. H.O) | Ouffice<br>Setting<br>3 H<br>(in H <sub>2</sub> O) | Ges Sample<br>Volume<br>Initial (ft <sup>3</sup> )<br>335.51 | Stark<br>Temp | DGM<br>Inlet<br>(°E) | DGM<br>Outlet | Squar <del>s</del><br>Rovi<br>A P | Stack<br>Ges<br>Velocity<br>Vs (ft/sec) | `volume<br>rfeterec<br>Vn/sit<br>/∰²\ | Isokinetics |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|---------------|----------------------|---------------|-----------------------------------|-----------------------------------------|---------------------------------------|-------------|
| 2-1               | 7.5                              | 0.14                                     | 2.30                                               | 340.24                                                       | 123           | 83                   | 83            | 0 374                             | 22.4                                    | 4 561                                 | 83.3        |
| 2-2               | 15.0                             | 0.14                                     | 1.90                                               | 347.30                                                       | 130           | 84                   | 83            | 0 374                             | 22.5                                    | 6 795                                 | 124 ð       |
| 2-3               | 22.5                             | 0.10                                     | 1.30                                               | 352.04                                                       | 128           | 86                   | 83            | 0.316                             | 190                                     | 4,547                                 | 98 û        |
| 1-1               | 30.0                             | 0.16                                     | 2,10                                               | 358.14                                                       | 122           | 88                   | 84            | 0.400                             | 25.9                                    | 5 947                                 | 99:8        |
| 1-2               | 37.5                             | 0.14                                     | 1.90                                               | 363.83                                                       | 123           | 92                   | 86            | 0 374                             | 22 .                                    | 5 421                                 | 95 11       |
| 1-3               | 45.0                             | 0.11                                     | 1.50                                               | 368.85                                                       | 123           | 94                   | 87            | 0 332                             | 19.2                                    | 1 765                                 | . 922       |
| 4-1               | 52.5                             | 0.15                                     | 2.00                                               | 375.56                                                       | 122           | 91                   | 87            | 0.387                             | 23 1                                    | 6 395                                 | 1127        |
| 4-2               | 60.0                             | 0.14                                     | 1.90                                               | 380.41                                                       | 125           | 95                   | 88            | 9 375                             | 22 -                                    | 1.600                                 | 84.1        |
| 4-3               | 67.5                             | 0.10                                     | 1.30                                               | 385.13                                                       | 123           | 96                   | 88            | U 216                             | 189                                     | 4 160                                 | 96.5        |
| 3-1               | 75.0                             | 0.14                                     | 1.90                                               | 390.88                                                       | 123           | 91                   | 87            | 0.375                             | 22 *                                    | 5478                                  | 100.0       |
| 3-2               | 82.5                             | 0.13                                     | 1.70                                               | 395.31                                                       | 122           | 95                   | 88            | 0.361                             | 21.5                                    | + 200                                 | 79,5        |
| 3-3               | 90.0                             | 0.11                                     | 1.50                                               | 401.45                                                       | 122           | 96                   | 88            | 0 332                             | 193                                     | 5913                                  | 119 E       |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 90                  | 1.78 | 65.94 | 124 | 88.5 | 0.360 | 21.5 | 62.87 | 99.6 |

#### Project No. 3648

| Project Number | 3648       |  |
|----------------|------------|--|
| Chemi          | Big Rivers |  |
| Plani          | Wilson     |  |
| Location       | Stack      |  |
| Date           | 9/29/2011  |  |
| Heier ID       | M14        |  |
| ¥;             | 1.0052     |  |
| Pitol Cp       | 0.84       |  |

| Nozzle Diameter (ini       | 0.355    |
|----------------------------|----------|
| Filter ID                  | 12222    |
| Ттан Турн                  | Impinger |
| Train IC:                  | IB4      |
| F <sub>b</sub> (Inches Hg) | 29.36    |
| P. (Inches H.O)            | -0.2     |
| Siari Tune                 | 1:13     |
| Siop Time                  | 3:24     |

Place an "x" in the appropriate Box

| Circular?    | х   |
|--------------|-----|
| Rectangular? |     |
| Diameter     | 408 |
| Length       |     |
| Width        |     |

| Misure        | Final Wt | Tare wt | Nei Mri |
|---------------|----------|---------|---------|
| _             | .(g)     | (g)     | (g)     |
| Impinger 1    | 708.0    | 557.0   | 151 0   |
| Impinger 2    | 478.0    | 475.0   | 3.0     |
| Impinger 3    | 737.0    | 736.0   | 10.     |
|               |          |         |         |
| Silica Gel    | 905.0    | 885.0   | 20.0    |
| Weight of Wa  | 155.0    |         |         |
| Silica Gel Ne | 20.0     |         |         |

| Orsai.   | %CO2 | %CO2+%O2 | %0, |
|----------|------|----------|-----|
| Tual 1   | 10.8 | 18.6     | 78  |
| Tivial 2 | 10.8 | 18.8     | 8.0 |
| Trial 3  | 10.8 | 18.8     | 8.0 |
| Average  | 10.8 | N/-      | 79  |

|          | Min/Pi<br>7.5 | Velocity<br>Pressure   | Onfice<br>Setting    | Gas Sample<br>Voluma | Slack | DGM   | DGM    | Square | Siack<br>Gas | Volume<br>Metered  |            |
|----------|---------------|------------------------|----------------------|----------------------|-------|-------|--------|--------|--------------|--------------------|------------|
| Traverse | Elapsed       | ΔP                     | AH                   | Initial (it )        | Temp  | Inlet | Gutlei | Poot   | Velocity     | Vinstri            | Isokineacs |
| Poini    | Time          | (In H <sub>2</sub> CI) | (m H <sub>2</sub> O) | 401.87               | (°F)  | (°F)  | (°F)   | AP     | Vs (fl/sec)  | (ft <sup>3</sup> ) | (%)        |
| 3-1      | 7.5           | 0.15                   | 2.00                 | 408.21               | 122   | 83    | 83     | 0.38?  | 231          | 5 109              | 108.5      |
| 3-2      | 15.0          | 0.14                   | 1.90                 | 413.90               | 124   | 84    | 83     | 0.374  | 22 i         | 5 176              | 100 \$     |
| 3-3      | 22.5          | 0.10                   | 1.30                 | 418.83               | 123   | 85    | 83     | 0.316  | 18.9         | 4 753              | 103 1      |
| 4-1      | 30.0          | 0.15                   | 2.00                 | 424.43               | 122   | 88    | 83     | 0 387  | 231          | 5 371              | 95.4       |
| 4-2      | 37.5          | 0.14                   | 1.90                 | 430.17               | 123   | 90    | 85     | 0.374  | -2,4         | 5 484              | 100.3      |
| 4-3      | 45.0          | 0.11                   | 1.50                 | 435.18               | 122   | 90    | 85     | 0.332  | 198          | 4 792              | 99.2       |
| 1-1      | 52.5          | 0.15                   | 2.00                 | 441.00               | 122   | 89    | 85     | 0.387  | 23.1         | 5.567              | 98.9       |
| 1-2      | 60.0          | 0.14                   | 1.90                 | 446.74               | 123   | 91    | 86     | 0 574  | 22.4         | 5 474              | 100.8      |
| 1-3      | 67.5          | 0.11                   | 1.50                 | 451.87               | 122   | 92    | 87     | 0,332  | 19.9         | 4 878              | 101.2      |
| 2-1      | 75.0          | 0.15                   | 2.00                 | 456.89               | 122   | 90    | 88     | 6.387  | 231          | 4 784              | 85.0       |
| 2-2      | 82.5          | 0.14                   | 1.90                 | 462.68               | 122   | 92    | 88     | 0 37+  | 22.4         | 5 507              | i01 3      |
| 2-3      | 90.0          | 0.11                   | 1.50                 | 467.88               | 122   | 94    | 89     | 0 352  | 15.9         | 4 927              | 102.2      |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 90                  | 1.78 | 66.01 | 122 | 87.2 | 0.363 | 21.7 | 63.08 | 99.7 |

| Project number      | 3648       |  |  |
|---------------------|------------|--|--|
| Client              | Big Rivers |  |  |
| Plani               | Wilson     |  |  |
| Location            | Stack      |  |  |
| Daie                | 9/29/2011  |  |  |
| meier ID            | M14        |  |  |
| Yu                  | 1.0052     |  |  |
| Ριωί C <sub>p</sub> | 0.84       |  |  |

| Nozzle Diameter (in)        | 0.355    |
|-----------------------------|----------|
| Filter ID                   | 12224    |
| Train Type                  | Impinger |
| Train ID                    | IBA      |
| F <sub>b</sub> (Inches Hg)  | 29.36    |
| P (Inches H <sub>2</sub> C) | -0.2     |
| Start Time                  | 4:04     |
| Stop Time                   | 5:54     |

| Circula/?    | х   |
|--------------|-----|
| Rectangular? |     |
| Dianeter     | 408 |
| Length       |     |
| wadth        |     |

| Moistura      | Final Wi      | Taie Ivt | Nei W |
|---------------|---------------|----------|-------|
|               | (g)           | (g)      | (g)   |
| Impinger 1    | 738.0         | 575.0    | 163.0 |
| Impinger 2    | 534.0         | 535.0    | -10   |
| E regnigm     | 732.0         | 730.0    | 2.0   |
| Silica Gel    | 901.0         | 881.0    | 20.0  |
| Welghi of W:  | 16+0          |          |       |
| Silica Gel Ne | t Weight, Va. | , (g)    | 20.0  |

| Oisai   | %CO2 | %CO2+%O2 | %O  |
|---------|------|----------|-----|
| Trial 1 | 10.8 | 18.8     | 5.0 |
| Tual 2  | 10.8 | 18.8     | 8.0 |
| Tual 3  | 10.8 | 18.8     | 8.0 |
| ⊬verage | 10.8 | NA       | 8.0 |

|          | Min/Pi  | elocit.               | Onfice .              | Gas Sample                 |       |       | 1.00   | -      | Siack       | Yolume             |             |
|----------|---------|-----------------------|-----------------------|----------------------------|-------|-------|--------|--------|-------------|--------------------|-------------|
| _        | 7.5     | Pressure              | Setirg                | Volume                     | Steck | DGrv  | DGNI   | Square | Ges         | i seterec          |             |
| Traveise | Elapsed | ΔP                    | AH                    | Initial (fr <sup>2</sup> ) | Temp  | lidet | Outlet | Rool   | Velocity    | Vinsid             | Isokineiics |
| Poini    | Time    | (in H <sub>2</sub> O) | (in H <sub>2</sub> O) | 469.14                     | (°F)  | (°F)  | (°F)   | άP     | Vs (ft/sec) | (it <sup>2</sup> ) | (***)       |
| 2-1      | 7.5     | 0.15                  | 2.00                  | 474.97                     | 122   | 89    | 88     | U 38?  | 23.2        | 5 561              | 99.2        |
| 2-2      | 15.0    | 0.14                  | 1.90                  | 480.76                     | 122   | 92    | 89     | 0 374  | 22.4        | 5 502              | 101.6       |
| 2-3      | 22.5    | 0.11                  | 1.50                  | 485.69                     | 122   | 96    | 89     | 0 332  | 19.8        | 4.66               | 971         |
| 1-1      | 30.0    | 0.15                  | 2.00                  | 491.55                     | 122   | 97    | 89     | 0 367  | 232         | 5.544              | 98.9        |
| 1-2      | 37.5    | D.14                  | 1.90                  | 497.34                     | 122   | 98    | 90     | 0.374  | 22          | 5 46?              | 100 \$      |
| 1-3      | 45.0    | D.12                  | 1.60                  | 502.66                     | 122   | 99    | 91     | 0.346  | 20.7        | 5.010              | 99.4        |
| 4-1      | 52.5    | D.15                  | 2.00                  | 508.51                     | 122   | 95    | 90     | 0.387  | 23 2        | 5 540              | 98.8        |
| 4-2      | 60.0    | 0.14                  | 1.90                  | 514.37                     | 122   | 98    | 91     | 0 374  | 22 -        | 5 528              | 102 1       |
| 4-3      | 67.5    | 0.12                  | 1.60                  | 519.65                     | 122   | 98    | 91     | 0346   | 20.7        | 4 977              | 993         |
| 3-1      | 75.0    | 0.15                  | 2.00                  | 525.50                     | 123   | 94    | 89     | 0.587  | 232         | 6 650              | 99 1        |
| 3-2      | 82.5    | 0.14                  | 1.90                  | 531.27                     | 123   | 96    | 90     | 0 374  | 22.4        | 5 458              | 100.9       |
| 3-3      | 90.0    | 0.11                  | 1.50                  | 536.40                     | 122   | 98    | 91     | 0.332  | 19.8        | + 834              | 1007        |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 90                  | 1.82 | 67.26 | 122 | 92.8 | 0.367 | 21.9 | 63.63 | 99.9 |

# Method 26A Field Data Entry

#### Project No. 3648

| Project Numbar    | 3648           |
|-------------------|----------------|
| Client            | Big Rivers     |
| Plani             | Wilson         |
| Lucetion          | Stack          |
| Date              | 9/28-9/29/2011 |
| Meier ID          | M19            |
| Y <sub>d</sub> is | 1.0101         |
| Priot Cp          | 0.84           |

| Nozzle Diameter (in)         | 0.365    |
|------------------------------|----------|
| Filter ID                    | NA       |
| Train Type                   | Impinger |
| Train ID                     | B15      |
| P <sub>b</sub> (Inches Hy)   | 29.36    |
| P. (Inches H <sub>2</sub> O) | -0.2     |
| Start Time                   | 21:54    |
| Stop Time                    | 0:43     |

Place an "x" in the appropriate Box

| Circular?    | x   |
|--------------|-----|
| Rectangular? |     |
| Dianieitei   | 408 |
| Length       |     |
| Vvidth       |     |

| Munsiure      | Final Wi    | Taiewi | Nei Wi |
|---------------|-------------|--------|--------|
|               | (g)         | (g)    | (g)    |
| Impinger 1    | 895.0       | 703.0  | 192.0  |
| Impinget 2    | 764.0       | 715.0  | -19 0  |
| Impinaer 3    | 727.0       | 712.0  | 15.0   |
|               |             |        |        |
| Silica Gel    | 822.0       | 798.0  | 24.0   |
| Weight of Ma  | 256.0       |        |        |
| Silica Sel Ne | t Weight, V | (9)    | 24.0   |

| Orsat   | %CO2 | %CO2+%O2 | %O <sub>2</sub> |
|---------|------|----------|-----------------|
| Youl 1  | 10.2 | 19.2     | 9.0             |
| Tinal 2 | 10.2 | 19.2     | 9.0             |
| Trial 3 | 10.2 | 19.2     | 9.0             |
| Average | 10.2 | iNA I    | 9.0             |

| Travense<br>Point | Min/Pi<br>10<br>Elapsed<br>Time | Velocity<br>Pressure<br>A P<br>(in H <sub>2</sub> O) | Onfice<br>Setting<br>3 H<br>(in H <sub>2</sub> O) | Gas Sample<br>Volume<br>Initial (ft <sup>3</sup> )<br>774.98 | Siack<br>Temp<br>(°F) | DGM<br>Inlet<br>(°F) | ErGrw<br>Outlei<br>(°F) | Square<br>Root<br>⊥P | Stack<br>Gaa<br>Velocity<br>Vs (ft/sec) | Volume<br>Metered<br>Vmstd<br>(ft <sup>2</sup> ) | isoknetice<br>(%) |
|-------------------|---------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-----------------------|----------------------|-------------------------|----------------------|-----------------------------------------|--------------------------------------------------|-------------------|
| 3-1               | 10                              | 0.14                                                 | 2.31                                              | 781.42                                                       | 125                   | 82                   | 80                      | 0 374                | 22.5                                    | 6.263                                            | 82.9              |
| 3-2               | 20                              | 0.13                                                 | 2.14                                              | 788.12                                                       | 125                   | 86                   | 80                      | U 36'i               | 21 ?                                    | 6 4 90                                           | 891               |
| 3-3               | 30                              | 0.12                                                 | 1.77                                              | 795.83                                                       | 125                   | 89                   | 80                      | 0 346                | 20.8                                    | 7 440                                            | 106 4             |
| 2-1               | 40                              | 0.14                                                 | 2.10                                              | 804.12                                                       | 124                   | 87                   | 82                      | 0 37-:               | 22.5                                    | S 007                                            | 105 S             |
| 2-2               | 50                              | 0.15                                                 | 2.20                                              | 811.91                                                       | 125                   | 93                   | 85                      | 0 387                | 22.2                                    | 7 464                                            | 95 4              |
| 2-3               | 60                              | 0.14                                                 | 2.10                                              | 819.82                                                       | 125                   | 91                   | 83                      | 0.374                | 22.5                                    | 7 805                                            | 100.8             |
| 1-1               | 70                              | 0.15                                                 | 2.20                                              | 827.78                                                       | 126                   | 88                   | 83                      | 0.387                | 23.2                                    | 7 676                                            | 982               |
| 1-2               | 80                              | 0.16                                                 | 2.40                                              | 835.89                                                       | 124                   | 89                   | 83                      | 0 400                | 24.0                                    | 7 817                                            | 96 7              |
| 1-3               | 90                              | 0.15                                                 | 2.20                                              | 843.87                                                       | 125                   | 91                   | 83                      | 0 387                | 22.3                                    | 2 674                                            | 98 1              |
| 4-1               | 100                             | 0.15                                                 | 2.20                                              | 851.98                                                       | 125                   | 87                   | 83                      | (U 587               | 22 3                                    | 7 828                                            | 1001              |
| 4-2               | 110                             | 0.13                                                 | 2.14                                              | 857.49                                                       | 125                   | 88                   | 82                      | 0 361                | 217                                     | 5 317                                            | 73.0              |
| 4-3               | 120                             | 0.14                                                 | 2.10                                              | 867.27                                                       | 125                   | 88                   | 82                      | 0.374                | 22.5                                    | 9.437                                            | 124.9             |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 120                 | 2.16 | 92.29 | 125 | 85.2 | 0.376 | 22.6 | 89.03 | 97.7 |

#### Method 26A Field Data Entry

| Projact Number       | 3648       |
|----------------------|------------|
| Client               | Big Rivers |
| Plan (               | Wilson     |
| Lovation             | Stack      |
| Date                 | 9/29/2011  |
| Metai ID             | M19        |
| Ya 👘 👘               | 1.0101     |
| Pitot C <sub>p</sub> | 0.84       |

| Nozzte Diameier (in)                     | 0.365    |
|------------------------------------------|----------|
| Filter IE                                | NA       |
| Train Type                               | Impinger |
| Train ID                                 | IB15     |
| P <sub>h</sub> (Inches Hg)               | 29.36    |
| P <sub>a</sub> (Inches H <sub>2</sub> O) | -0.2     |
| Star: Time                               | 1:41     |
| Stop Time                                | 3:53     |

Place an "x" in the appropriate Box

| Circular?     | x   |
|---------------|-----|
| Pectangular * |     |
| Dianiejer     | 408 |
| Length        |     |
| vvidtn        |     |

| เปิดเธ <b>ณาค</b> | Final <sup>th</sup> t<br>(g) | Tane Wi<br>(g) | Nei Wi<br>(g) |
|-------------------|------------------------------|----------------|---------------|
| Impinger 1        | 744.0                        | 584.0          | 160 0         |
| Impingen 2        | 748.0                        | 730.0          | 18.0          |
| linpiager 5       | 669.0                        | 665.0          | ÷0            |
|                   |                              |                |               |
| Silica Gel        | 913.0                        | 884.0          | 29.0          |
| Weight of W;      | 182.0                        |                |               |
| Silica Gel Ne     | 29.0                         |                |               |

| Orsai   | %CO2 | %CO.+%O₂ | %O <sub>2</sub> |
|---------|------|----------|-----------------|
| ïnal 'i | 10.8 | 18.6     | 70              |
| Tinal 2 | 10.8 | 18.8     | 8.0             |
| Thal 3  | 10.8 | 18.8     | 8.0             |
| Average | 10.8 | NA       | 79              |

|          | Min/Pi  | Velucio               | Orifice  | Gaa Sample    | 1.00  | 10000 | 1 million 1 million 1 |        | Stack       | Volume             | · · · · · · |
|----------|---------|-----------------------|----------|---------------|-------|-------|-----------------------|--------|-------------|--------------------|-------------|
| -        | 10      | S-eccure              | Seiting  | Volume        | Steck | DiBhi | DGM                   | Square | Gas         | Meiered            | 1           |
| Traverse | Elapsed | ۵P -                  | ΔH       | Initial (f; ) | Temp  | Inlet | Outles                | Robi   | Velocity    | Vnistd             | Isokureiuca |
| Pourt    | Time    | (in H <sub>2</sub> O) | (in H-O) | 867.97        | (°F)  | (°F)  | ("F)                  | AP     | Is (flisec) | (ft <sup>°</sup> ) | (%)         |
| 2-1      | 10      | 0.15                  | 2.20     | 877.13        | 125   | 81    | 81                    | 0.387  | 251         | 8 908              | 111 *       |
| 2-2      | 20      | 0.15                  | 2.20     | 884.47        | 126   | 87    | 80                    | 0.387  | 23.2        | 7 104              | 88 9        |
| 2-3      | 30      | 0.13                  | 1.90     | 892.18        | 125   | 94    | 82                    | 0 361  | 21.5        | 7 395              | 39.3        |
| 3-1      | 40      | 0.12                  | 1.70     | 899.89        | 125   | 94    | 84                    | ΰ 34C  | 20.7        | 7 374              | 1031        |
| 3-2      | 50      | 0.16                  | 2.30     | 907.53        | 126   | 94    | 84                    | 0 400  | 23.9        | 7 322              | 887         |
| 3-3      | 60      | 0.10                  | 1.40     | 914.39        | 125   | 96    | 86                    | 0 316  | 189         | 6 536              | 100 1       |
| 4-1      | 70      | 0.13                  | 1.90     | 922,18        | 125   | 96    | 86                    | 0 361  | 21.5        | 7 451              | 99.8        |
| 4-2      | 80      | 0.11                  | 1.60     | 928.97        | 125   | 96    | 86                    | 0.332  | 19.8        | 6 73               | 94.5        |
| 4-3      | 90      | 0.11                  | 1.60     | 935.95        | 125   | 97    | 87                    | 0/332  | 19.8        | 6 642              | 97 0        |
| 1-1      | 100     | 0.11                  | 1.60     | 942.82        | 126   | 94    | 87                    | 0.352  | 19.9        | 6.555              | 955         |
| 1-2      | 110     | 0.15                  | 2.10     | 950.89        | 125   | 95    | 87                    | C 387  | 23.1        | 7 702              | 96.5        |
| 1-3      | 120     | 0.12                  | 1.70     | 957.96        | 125   | 96    | 87                    | 0.346  | 207         | 6735               | 9+1         |

Less Volume

0.43

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 120                 | 1.85 | 89.56 | 125 | 89.0 | 0.357 | 21.4 | 85.73 | 96.9 |

#### Method 26A Field Data Entry

#### Project No. 3648

| Project Number | 3648       |
|----------------|------------|
| Client         | Big Rivers |
| Flant          | Wilson     |
| Lonation       | Stack      |
| Date           | 9/29/2011  |
| Metei ID       | M19        |
| Yd             | 1.0101     |
| Pito: C        | 0.84       |

| Nozzle Dianieler (iii)       | 0.365    |
|------------------------------|----------|
| Filter ID                    | NA       |
| Тган Туре                    | Impinger |
| Train ID                     | IB15     |
| P <sub>b</sub> (Inches Hg)   | 29.36    |
| P. (Inches H <sub>2</sub> O) | -0.2     |
| Start Time                   | 4:23     |
| Stop Time                    | 6:31     |

| Circular?    | x   |
|--------------|-----|
| Rectangular? |     |
| Diameter     | 408 |
| Langih       |     |
| Width        | _   |

| Moisium      | Final thri    | Tare Wri | Nethill |
|--------------|---------------|----------|---------|
| _            | (5)           | (g)      | · (g)   |
| Impingel 1   | 888.0         | 703.0    | 195.0   |
| Impringer 2  | 743.0         | 718.0    | 25.0    |
| tmunger ?    | 730.0         | 717.0    | 13.0    |
|              |               |          |         |
| Silica Gel   | 845.0         | 822.0    | 22.0    |
| Weight of Wa | 223.0         |          |         |
| Silua Gal Na | i Weight V.a. | (g)      | 23.0    |

| Orsat   | %00- | %CO2+%O2 | %O2 |
|---------|------|----------|-----|
| Trial 1 | 10.8 | 18.8     | 8.0 |
| Trial 2 | 10.8 | 18.8     | 8.0 |
| Trial 3 | 10.8 | 18.8     | 8.0 |
| Averaye | 108  | NA       | 2.0 |

| Traverse | Min/Pi<br>10<br>Elapsec | Velopiiv<br>Pressure<br>A P | Onfice<br>Setting<br>A H | Gas Sample<br>Volume<br>Initial (ft.) | Stack<br>Temp | DGM<br>Inlet | DGM<br>Ouilet | Square<br>P.oni | Stack<br>Gas<br>Velocity | Volume<br>Fantorod<br>Vinsid | isokinetics |
|----------|-------------------------|-----------------------------|--------------------------|---------------------------------------|---------------|--------------|---------------|-----------------|--------------------------|------------------------------|-------------|
| Point    | Time                    | (in H <sub>2</sub> O)       | (in H <sub>i</sub> O)    | 960.20                                | (°F)          | (°F)         | (°F)          | ۱P              | ¥₂ (ft/sec)              | (f <sup>r°</sup> )           | (%)         |
| 4-1      | 10                      | 0.12                        | 1.70                     | 967.14                                | 124           | 86           | 85            | 0 346           | 20.8                     | 6.68                         | 24.9        |
| 4-2      | 20                      | 0.12                        | 1.70                     | 974.26                                | 125           | 90           | 84            | 0.340           | 20.8                     | 6.838                        | 97.2        |
| 4-3      | 30                      | 0.12                        | 1.70                     | 971.33                                | 125           | 93           | 85            | 0.046           | 20.8                     | -2.604                       | -39.9       |
| 1-1      | 40                      | 0.11                        | 1.60                     | 988.45                                | 125           | 95           | 86            | U 332           | 19 9                     | 16 334                       | 242 5       |
| 1-2      | 50                      | 0.15                        | 2.10                     | 996.57                                | 125           | 96           | 86            | 0.387           | 23.2                     | 7 750                        | 98.5        |
| 1-3      | 60                      | 0.14                        | 2.00                     | 1004.14                               | 125           | 95           | 86            | 3371            | 22.4                     | 7 230                        | 95.1        |
| 3-1      | 70                      | 0.14                        | 2.00                     | 1011.81                               | 125           | 94           | 85            | 0.374           | 22.4                     | 7 339                        | 96.6        |
| 3-2      | 80                      | 0.12                        | 1.70                     | 1018.98                               | 125           | 89           | 85            | 0 346           | 20.5                     | 886 5                        | 97 9        |
| 3-3      | 90                      | 0.11                        | 1.60                     | 1026.01                               | 126           | 91           | 85            | U 232           | 19 \$                    | 6.7 5                        | 1001        |
| 2-1      | 100                     | 0.10                        | 1.40                     | 1032.69                               | 125           | 92           | 83            | 0.316           | 15 0                     | 6405                         | 99.7        |
| 2-2      | 110                     | 0.13                        | 1.90                     | 1040.21                               | 125           | 92           | 85            | 0.361           | 21 0                     | 7 206                        | <u>98 A</u> |
| 2-3      | 120                     | 0.11                        | 1.60                     | 1047.22                               | 125           | 91           | 85            | 0 332           | 1\$ 9                    | 6.719                        | 997         |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 120                 | 1.75 | 87.02 | 125 | 88.5 | 0.349 | 21.0 | 83.36 | 97.9 |

#### Method 29 Field Data Entry

#### Project No. 3648

| Project Number       | 3648           |
|----------------------|----------------|
| Client               | Big Rivers     |
| Plant                | Wilson         |
| Location             | Stack          |
| Date                 | 9/28-9/29/2011 |
| Meter ID             | M28            |
| No. I                | 0.9976         |
| Fitol C <sub>r</sub> | 0.84           |

| Nozzle Diameter (in)         | 0.312    |
|------------------------------|----------|
| Filier ID                    | NA       |
| Train Type                   | Impinger |
| Train ID                     | IB25     |
| P <sub>b</sub> (Inches Hg)   | 29.36    |
| P. (Inches H <sub>2</sub> O) | -0.2     |
| Stari Time                   | 21:54    |
| Stop Time                    | 0:31     |

| Circular?    | x   |
|--------------|-----|
| Reciangular? |     |
| Dianieter    | 408 |
| Length       |     |
| Width        |     |

| Moisture      | Final W.    | The areT | Ne Wi |
|---------------|-------------|----------|-------|
|               | (g)         | (9)      | (9)   |
| Impinger i    | 780.0       | 590.0    | 190 0 |
| Inpinger 2    | 744.0       | 734.0    | 1ú U  |
| Ітряндая 3    | 667.0       | 665.0    | 20    |
| Impunger 4    | 554.0       | 553.0    | 10    |
| Silica Gel    | 873.0       | 859.0    | 14.0  |
| Weight of We  | V _ (g)     | 203.0    |       |
| Silica Gel Ne | Weight Vwag | (9)      | 14.0  |

| Orsei   | %CCc | %CO %O2 | %O2  |
|---------|------|---------|------|
| Tnel 1  | 10.2 | 19.2    | 9.0  |
| Trial 2 | 10.2 | 19.2    | \$.0 |
| Tnal 3  | 10.2 | 19.2    | 9.0  |
| Average | 10.2 | NA      | 9.0  |

|          | Min/5%<br>10 | Velocity<br>Pressure  | Onfice<br>Setting     | Gas Sample   | Stank | DGM   | DGM    | Square | Siack<br>Gas | Voluine<br>Meiered | 11 1 4      |
|----------|--------------|-----------------------|-----------------------|--------------|-------|-------|--------|--------|--------------|--------------------|-------------|
| Traveise | Elaused      | a P                   | aH                    | Initial (85) | Temo  | Inter | Gutlei | Rout   | elocity      | Vrnstd             | Isokinetics |
| Poirit   | Time         | (in H <sub>2</sub> C) | (in H <sub>2</sub> O) | 25.60        | (°F)  | (°F)  | ("Fi   | ۵F     | /s (ft/sec)  | (ft <sup>*</sup> ) | (%)         |
| 4-1      | 10           | 0.15                  | 1.20                  | 32.13        | 125   | 87    | 88     | 0 387  | 23           | C 181              | 108.5       |
| 4-2      | 20           | 0.14                  | 1.12                  | 38.08        | 125   | 94    | 87     | 0.374  | 22.5         | 5 600              | 101.8       |
| 4-3      | 30           | 0.11                  | 0.88                  | 43.23        | 124   | 97    | 89     | 0.332  | 19.9         | 4.822              | 3 36        |
| 3-1      | 40           | 0.15                  | 1.20                  | 49.38        | 125   | 91    | 91     | 0 387  | 23.2         | 5 784              | 101.6       |
| 3-2      | 50           | 0.14                  | 1.12                  | 55.21        | 124   | 97    | 92     | U 374  | 22.5         | 5447               | 98 9        |
| 3-3      | 60           | 0.11                  | 0.88                  | 60.55        | 125   | 96    | 91     | 0.332  | 20.0         | 4 996              | 102.4       |
| 2-1      | 70           | 0.16                  | 1.28                  | 66.82        | 124   | 93    | 92     | 0 100  | 240          | 5 982              | 99.9        |
| 2-2      | 80           | 0.14                  | 1.12                  | 72.80        | 124   | 97    | 92     | U.37   | 22.5         | 5 588              | 101 5       |
| 2-3      | 90           | 0.14                  | 1.12                  | 78.62        | 124   | 98    | 93     | 0 374  | 225          | 5 428              | 96€         |
| 1-1      | 100          | 0.16                  | 1.28                  | 85.11        | 124   | 92    | 92     | 0.400  | 240          | E 094              | 105.5       |
| 1-2      | 110          | 0.14                  | 1.12                  | 90.92        | 125   | 97    | 92     | 0 374  | .225         | 5 42S              | 987         |
| 1-3      | 120          | 0.14                  | 1.12                  | 96.97        | 125   | 97    | 92     | 0.074  | 22.5         | 5.653              | 102 7       |

| Totals and Averages |      |       |     |      |       |      |       |       |
|---------------------|------|-------|-----|------|-------|------|-------|-------|
| 120                 | 1.12 | 71.37 | 125 | 92.8 | 0.374 | 22.5 | 66.89 | 101.4 |

Project No. 3648

| Project Number       | 3648       |
|----------------------|------------|
| Client               | Big Rivers |
| Plani                | Wilson     |
| Location             | Stack      |
| Date                 | 9/29/2011  |
| Meter ID             | M28        |
| Ya                   | 0.9976     |
| Pitol C <sub>p</sub> | 0.84       |

| Nozzle Diameter (in)                     | 0.312    |
|------------------------------------------|----------|
| Filier ID                                | NA       |
| Train Type                               | Impinger |
| Train ID                                 | IB       |
| P <sub>2</sub> (Inches Hy)               | 29.36    |
| P <sub>c</sub> (Inches H <sub>2</sub> O) | -0.2     |
| Start Time                               | 1:41     |
| Stop Time                                | 3:53     |

| Circular?    | x   |
|--------------|-----|
| Rectangular? |     |
| Diameter     | 408 |
| Langth       |     |
| Whetit.      |     |

| Moisiure      | Final Wi                           | Тые чК | Net 1/1 |  |  |  |  |
|---------------|------------------------------------|--------|---------|--|--|--|--|
|               | (g)                                | (9)    | (g)     |  |  |  |  |
| impinger 1    | 800.0                              | 644.0  | 156 0   |  |  |  |  |
| Impinger 2    | _ 654.0                            | 641.0  | 130     |  |  |  |  |
| Impinger 3    | 622.0                              | 612.0  | 100     |  |  |  |  |
| Impinger 4    |                                    | 550.0  | 30      |  |  |  |  |
| Silica Gel    | 905.0                              | 891.0  | 14.0    |  |  |  |  |
| Weight of Wa  | Weight of Water Collected, V , (9) |        |         |  |  |  |  |
| Silica Gel Ne | . 14.0                             |        |         |  |  |  |  |

| Orsai   | %0.0% | %CO2 %C2 | %0, |
|---------|-------|----------|-----|
| Trial 1 | 10.8  | 18.6     | 7.9 |
| Trial 2 | 10.8  | 18.8     | 9.0 |
| Tnal 3  | 10.8  | 18.8     | 8.0 |
| Average | 10 %  | NA       | 79  |

| Traverse<br>Point | Min;Pi<br>10<br>Elapsed<br>Time | Velocity<br>Pressure<br>2 P<br>(in H <sub>2</sub> O) | Onthree<br>Setting<br>A H<br>(in H <sub>2</sub> O) | Ges Sample<br>Volume<br>Initial (ft <sup></sup> )<br>98,10 | Stack<br>Tamy<br>(°F) | DGM<br>Intel<br>(°E) | DGM<br>Cuilet<br>(°F) | Squale<br>Root | Steck<br>Gas<br>Velocity<br>Vs (fivsec) | Volume<br>Metered<br>Vmstd<br>(ft²) | lsokinatica<br>(%) |
|-------------------|---------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|-----------------------|----------------------|-----------------------|----------------|-----------------------------------------|-------------------------------------|--------------------|
| 1-1               | 10                              | 0.16                                                 | 1.29                                               | 104.56                                                     | 124                   | 88                   | 87                    | J 400          | 240                                     | £ 116                               | 1031               |
| 1-1               | 20                              | 0.16                                                 | 1.29                                               | 110.97                                                     | 125                   | 91                   | 87                    | 0 400          | 240                                     | 6 052                               | 1/21               |
| 1-2               | 30                              | 0.14                                                 | 1.10                                               | 116.88                                                     | 124                   | 95                   | 88                    | 0 374          | 22.1                                    | 5 552                               | 100 0              |
| 2-1               | -10                             | 0.15                                                 | 1.17                                               | 123.04                                                     | 125                   | 92                   | 89                    | 0 387          | 2:2                                     | 5 798                               | 101.0              |
| 2-2               | 50                              | 0.15                                                 | 1.17                                               | 129.21                                                     | 125                   | 96                   | 89                    | 0 387          | 22 2                                    | 5 787                               | 100 6              |
| 2-3               | 60                              | 0.12                                                 | 0.94                                               | 134.75                                                     | 124                   | 97                   | 92                    | 0346           | 20.8                                    | 5 174                               | 100 7              |
| 3-1               | 70                              | 0.14                                                 | 1.09                                               | 140.56                                                     | 124                   | 91                   | 90                    | 0 374          | 22.4                                    | 5 \$68                              | 96 5               |
| 3-2               | 80                              | D.14                                                 | 1.09                                               | 146.42                                                     | 124                   | 96                   | 91                    | J 374          | 22.4                                    | 5 485                               | 98.8               |
| 3-3               | 90                              | 0.10                                                 | 0.78                                               | 151.47                                                     | 124                   | 96                   | 91                    | 0 316          | 19.0                                    | + 723                               | 100?               |
| 4-1               | 100                             | 0.14                                                 | 1.09                                               | 157.27                                                     | 124                   | 94                   | 91                    | J 374          | 22.4                                    | 5 439                               | 98.0               |
| 4-2               | 110                             | 0.14                                                 | 1.09                                               | 163.08                                                     | 124                   | 94                   | 93                    | 0 374          | 22.4                                    | 5 438                               | 35.0               |
| 4-3               | 120                             | 0.10                                                 | 0.78                                               | 168.00                                                     | 125                   | 95                   | 91                    | 0316           | 19.0                                    | 4 606                               | 96 -               |

| Totals and Averages |      |       |     |      |       |      |       |       |
|---------------------|------|-------|-----|------|-------|------|-------|-------|
| 120                 | 1.07 | 69.90 | 124 | 91.8 | 0.369 | 22.1 | 65.62 | 100.0 |
|                     |      |       |     |      |       |      |       |       |

| Projeci Number     | 3648       |
|--------------------|------------|
| Clien              | Big Rivers |
| Plani              | Wilson     |
| Location           | Stack      |
| Date               | 9/29/2011  |
| ivieter ID         | M28        |
| Ya                 | 0.9976     |
| Phu C <sub>p</sub> | 0.84       |

| Nozzle Diameter (in)                     | 0.312    |
|------------------------------------------|----------|
| Filter ID                                | NA       |
| Train Type                               | Impinger |
| Train ID                                 | IB25     |
| Py (Inches Hy)                           | 29.36    |
| P <sub>e</sub> (Inches H <sub>2</sub> O) | -0.2     |
| Start Time                               | 4:19     |
| Siop Time                                | 6:31     |

| Circuler?    | x   |
|--------------|-----|
| Rectangular? |     |
| Dramote.     | 408 |
| Length       |     |
| Width        |     |

| Moisiuie      | Final W        | Tare W/s | Net Wit |
|---------------|----------------|----------|---------|
| 1_0 <u>_</u>  | (g)            | (9)      | (9)     |
| Impanger 1    | 773.0          | 594.0    | 1790    |
| Impinger 2    | 739.0          | 733.0    | 60      |
| Impinger 5    | 665.0          | 664.0    | 10      |
| Impinger 4    | 557.0          | 556.0    | 10      |
| Silics Gel    | 881.0          | 873.0    | 8,0     |
| Weighi of Wa  | aier Collected | V.e. (y) | 187 'J  |
| Silica Gel Ne | 06             |          |         |

| Orsai   | %CO₂ | %CO2+000 | %0  |
|---------|------|----------|-----|
| Tael 1  | 10.8 | 18.8     | 0.3 |
| Tual 2  | 10.8 | 18.8     | 80  |
| Tnal 3  | 10.8 | 18.8     | 8.0 |
| Average | 10.8 | NA       | 8.0 |

| Traverse<br>Point | Min/Pi<br>10<br>Elapseci<br>Time | Velocity<br>Pressure<br>2 P<br>(in H <sub>2</sub> O) | Onlines<br>Setting<br>AH<br>(in H <sub>2</sub> C) | Gas Sample<br>Volume<br>Initial (ft <sup>3</sup> )<br>168.50 | Siack<br>Terap<br>( <sup>¢</sup> F) | DGM<br>Inlet<br>(°F) | DGM<br>Outlet | Square<br>Root<br>A P | Siack<br>Gas<br>Velocity<br>Ve (firaec) | Volume<br>Matered<br>Vinstd<br>(ft*) | Isokineiics<br>(%) |
|-------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-------------------------------------|----------------------|---------------|-----------------------|-----------------------------------------|--------------------------------------|--------------------|
| 3-1               | 10                               | 0.14                                                 | 1.09                                              | 174.36                                                       | 124                                 | 91                   | 91            | 0 374                 | 22.4                                    | 5 510                                | 99.1               |
| 3-2               | 20                               | 0.14                                                 | 1.09                                              | 180.15                                                       | 124                                 | 92                   | 89            | 0.374                 | 22.4                                    | E 449                                | 98.0               |
| 3-3               | 30                               | 0.11                                                 | 0.86                                              | 185.69                                                       | 124                                 | 94                   | 89            | J 332                 | 195                                     | 5 201                                | 1056               |
| 2-1               | 40                               | 0.16                                                 | 1.25                                              | 191.54                                                       | 124                                 | 95                   | 89            | U 400                 | 24.0                                    | 5 495                                | 92.*               |
| 2-2               | 50                               | 0.16                                                 | 1.25                                              | 197.88                                                       | 124                                 | 95                   | 90            | 0.00                  | 240                                     | 5 947                                | 100 1              |
| 2-3               | 60                               | 0.12                                                 | 0.94                                              | 203.38                                                       | 125                                 | 96                   | 91            | 0.346                 | 20.8                                    | 5 i 46                               | 100.1              |
| 1-1               | 70                               | 0.16                                                 | 1.25                                              | 209.66                                                       | 125                                 | 91                   | 90            | 0.00                  | 24 J                                    | 5912                                 | 3 20               |
| 1-2               | 80                               | 0.15                                                 | 1.17                                              | 215.75                                                       | 125                                 | 96                   | 91            | 0.38                  | 23.2                                    | 5 701                                | 99.2               |
| 1-3               | 90                               | 0.13                                                 | 1.02                                              | 221.48                                                       | 125                                 | 96                   | 91            | 0.561                 | 216                                     | 5 362                                | 100.2              |
| 4-1               | 100                              | 0.15                                                 | 1.17                                              | 227.66                                                       | 125                                 | 95                   | 91            | Ú 387                 | 23.2                                    | 5 791                                | 100.7              |
| 4-2               | 110                              | 0.16                                                 | 1.25                                              | 233.85                                                       | 125                                 | 96                   | 90            | 0 400                 | 240                                     | 5 301                                | 97 7               |
| 4-3               | 120                              | 0.11                                                 | 0.86                                              | 239.09                                                       | 125                                 | 96                   | 91            | 0.332                 | 19.S                                    | 4.90                                 | 99.6               |

| Totals and Averages |      |       |     |      |       |      |       |      |
|---------------------|------|-------|-----|------|-------|------|-------|------|
| 120                 | 1.10 | 70.59 | 125 | 92.3 | 0.374 | 22.4 | 66.21 | 99.3 |

Stop Time

| Froject Number             | 3648           |
|----------------------------|----------------|
| Client                     | Big Rivers     |
| Plant                      | Wilson         |
| Location                   | Stack          |
| Date                       | 9/28-9/29/2011 |
| F <sub>b</sub> (Inches Hg) | 29.36          |
|                            |                |
| Meter ID                   | M25A           |
| Y <sub>4</sub>             | 0.9994         |
|                            |                |
| Start Time                 | 22:59          |
|                            |                |

| Meter ID | M25A   |
|----------|--------|
| Ч        | 1.0017 |

| Run 1   |             |      |         |
|---------|-------------|------|---------|
| Min/Pt  | Gas Sample  |      | Volume  |
| 10      | Volume      | DGM  | Metered |
| Elapsed | Initial (L) | Temp | Vmstd   |
| Time    | 0.00        | (°F) | (L)     |
| 10.0    | 3.16        | 80   | 3 029   |
| 20.0    | 6.39        | 84   | 3 073   |
| 30.0    | 9.35        | 87   | 2.801   |
| 40.0    | 12.46       | 100  | 2.875   |
| 50.0    | 15.30       | 105  | 2.602   |
| 60.0    | 18.26       | 107  | 2 702   |
| 70.0    | 21.24       | 109  | 2 711   |
| 80.0    | 24.19       | 111  | 2 674   |
| 90.0    | 27.39       | 112  | 2 896   |

0:29

| Run 1 Spike | ed          |       |         |
|-------------|-------------|-------|---------|
| Min/Pf      | Gas Sample  |       | Volume  |
| 10          | Volume      | DGM   | Metered |
| Elapsed     | Initial (L) | Temp. | Vmstd   |
| Time        | 0.00        | (°F)  | (L)     |
| 10.0        | 3.50        | 80    | 3 363   |
| 20.0        | 6.48        | 84    | 2.842   |
| 30.0        | 9.52        | 87    | 2 883   |
| 40.0        | 12.46       | 100   | 2 724   |
| 50.0        | 15.40       | 105   | 2 700   |
| 60.0        | 18.33       | 107   | 2 681   |
| 70.0        | 21.16       | 109   | 2.580   |
| 80.0        | 24.26       | 111   | 2 817   |
| 90.0        | 27.56       | 112   | 2 993   |

| Totals and Averages |       |      |       | Totals and | Totals and Averages |      |       |  |
|---------------------|-------|------|-------|------------|---------------------|------|-------|--|
| 90                  | 27.39 | 99.4 | 25.34 | 90         | 27.56               | 99.4 | 25.56 |  |

| Project Number             | 3648       |
|----------------------------|------------|
| Client                     | Big Rivers |
| Plant                      | Wilson     |
| Location                   | Stack      |
| Date                       | 9/29/11    |
| P <sub>b</sub> (Inches Hg) | 29.36      |
| ·                          |            |
| Meter ID                   | M25A       |
| Y <sub>d</sub>             | 0.9994     |
|                            |            |
| Start Time                 | 2:18       |
| Stop Time                  | 3:48       |

| Meter ID | M25A   |
|----------|--------|
| Ya       | 1.0017 |

| Run 2   |             |      |         |
|---------|-------------|------|---------|
| Min/Pt  | Gas Sample  |      | Volume  |
| 10      | Volurne     | DGM  | Metered |
| Elapsed | Initial (L) | Temp | Vmstd   |
| Time    | 0.00        | (°F) | (L)     |
| 10.0    | 3.16        | 83   | 3 012   |
| 20.0    | 6.25        | 85   | 2.935   |
| 30.0    | 9.36        | 88   | 2 937   |
| 40.0    | 12.35       | 98   | 2 774   |
| 50.0    | 15.42       | 100  | 2,838   |
| 60.0    | 18.50       | 103  | 2.832   |
| 70.0    | 21.55       | 105  | 2 794   |
| 80.0    | 24.56       | 107  | 2 748   |
| 90.0    | 27.69       | 109  | 2 847   |

| Run 2 Spike | ed          |      |         |
|-------------|-------------|------|---------|
| Min/Pt      | Gas Sample  |      | Volume  |
| 10          | Volume      | DGM  | Metered |
| Elapsed     | Initial (L) | Temp | Vmstd   |
| Time        | 0.00        | (°F) | (L)     |
| 10.0        | 2.98        | 83   | 2 847   |
| 20.0        | 6.05        | 85   | 2,922   |
| 30.0        | 9.16        | 88   | 2 944   |
| 40.0        | 12.19       | 98   | 2.817   |
| 50.0        | 15.22       | 100  | 2 807   |
| 60.0        | 18.20       | 103  | 2 7 4 6 |
| 70.0        | 21.17       | 105  | 2 727   |
| 80.0        | 24.18       | 107  | 2 754   |
| 90.0        | 27.17       | 109  | 2 726   |

| Totals and | Averages |
|------------|----------|
| 90         | 27.69    |

| 90 |
|----|
|----|

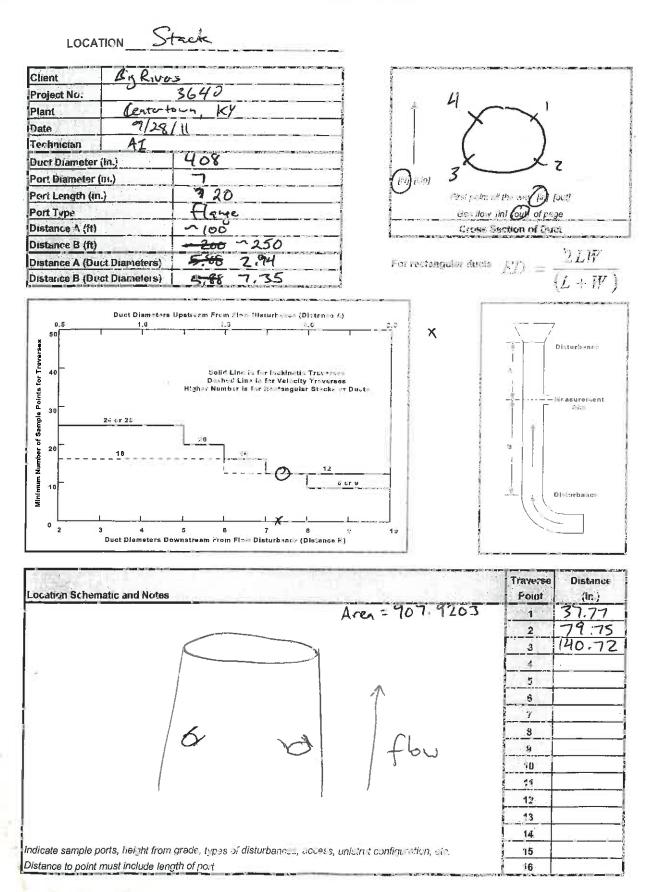
.....

97.6 25.71

| Totals and / | Totals and Averages |      |       |
|--------------|---------------------|------|-------|
| 90           | 27.17               | 97.6 | 25.28 |

| Project Number             | 3648       |
|----------------------------|------------|
| Client                     | Big Rivers |
| Plant                      | Wilson     |
| Location                   | Stack      |
| Date                       | 9/29/11    |
| P <sub>b</sub> (Inches Hg) | 29.36      |
|                            |            |
| Meter ID                   | M25A       |
| Yd                         | 0.9994     |
|                            |            |
| Start Time                 | 5:09       |
| Stop Time                  | 6:39       |

| Meter ID       | M25A   |
|----------------|--------|
| Y <sub>d</sub> | 1.0017 |


| Run 3   |             |      |         |
|---------|-------------|------|---------|
| Min/Pt  | Gas Sample  |      | Volume  |
| 10      | Volume      | DGM  | Metered |
| Elapsed | Initial (L) | Temp | Vmstd   |
| Time    | 0.00        | (°F) | (L)     |
| 10.0    | 3.19        | 83   | 3.041   |
| 20.0    | 6.25        | 86   | 2 901   |
| 30.0    | 9.32        | 93   | 2,873   |
| 40.0    | 12.38       | 97   | 2 844   |
| 50.0    | 15.42       | 101  | 2 805   |
| 60.0    | 18.40       | 103  | 2 740   |
| 70.0    | 21.35       | 106  | 2 698   |
| 80.0    | 24.27       | 108  | 2 661   |
| 90.0    | 27.29       | 109  | 2,747   |

| Min/Pt  | Gas Sample  |      | Volume  |
|---------|-------------|------|---------|
| 10      | Volume      | DGM  | Metered |
| Elapsed | Initial (L) | Temp | Vmstd   |
| Time    | 0.00        | (°F) | (L)     |
| 10.0    | 3.06        | 83   | 2 924   |
| 20.0    | 6.08        | 86   | 2 870   |
| 30.0    | 9.11        | 93   | 2 843   |
| 40.0    | 12.16       | 97   | 2 841   |
| 50.0    | 15.19       | 101  | 2 802   |
| 60.0    | 18.24       | 103  | 2 811   |
| 70.0    | 21.27       | 106  | 2 777   |
| 80.0    | 24.32       | 108  | 2 786   |
| 90.0    | 27.28       | 109  | 2 699   |

| Totals and A | Averages |      |       | Totals and | Averages |      |       |
|--------------|----------|------|-------|------------|----------|------|-------|
| 90           | 27.29    | 98.4 | 25.29 | 90         | 27.28    | 98.4 | 25.34 |

Field Data

Ainech Environmental Services, Inc. Nethod 1 Data Shrist



| RVICES INC.                                                       |                            | Fage / of / | Barometric (not-to) $29.3C$ Water [x10] [g]<br>Amblent Territo ( $^{0}F$ ) $BO^{\circ}$ Stiftica rel (g)<br>Static (mH <sub>2</sub> O) - O, 2 Total Mic<br>Probe ID $A \not\in S - /2 - Y$ Liner Type $T \not\in F$<br>Nozzle ID $- 555$ Nozzle Uta (m) $-355$ | 0                                                                                                                                                                                                                                                                                                                                                                  | NS T.MUS: 21<br>Auxiliary<br>Temp                                                                                                              | 9 55<br>12 53<br>12 53<br>12 53<br>12 53<br>12 53<br>12 53<br>12 53<br>12 53<br>12 53<br>12 54<br>12 54<br>12<br>12<br>14<br>12<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 88 1 25<br>88 1 56<br>88 1 56<br>88 11 58<br>8 11 58<br>9 55<br>9 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 |
|-------------------------------------------------------------------|----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| AIRTECH ENVIRONMENTAL SERVICES INC.<br>General Testing Data Sheet | TESTING TYPE: PARTICU LATE | UN NO.      | BIG RIVERS<br>D.B. WILSON<br>STACK<br>OR-2029-11 Project No. 31,48<br>Derator ST<br>Perator AT                                                                                                                                                                 | Meter ID     WV - I-I     Yd     1.0052     Pittot Cp     84     NI     5     2       AH@     1.601     Kr     16.43     Leask check     V     First point all the way (m) jour)       Pre Leask Check     0.023     (InHg)     19     19     Cas flow, fin) (m) of page       Post Leask Check     0.003     18     18     (InHg)     Cass flow, fin) (m) of page | int Velocity Orifice Gas Sample Finds (°F) Temp Te<br>0 Pressure Setting Volume Stack Temp Te<br>10 △P (°F) (°F) (°F) (°F) (°F) (°F) (°F) (°F) | 1128     220     321     45     83       130     312     372     372     372     372       128     370     371     46     84       128     370     371     47     86       121     320     321     47     86       3     125     370     321     47     86       3     121     320     321     47     86       3     121     320     321     47     86       3     121     320     321     47     86       3     121     320     321     47     86       3     121     320     322     49     86       3     121     320     322     49     86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                       |

4

Circle correct bracketed [] units Train Type denotos implingers, knockouts, etc.

.

| AIRTECH ENVIRONMENTAL SERVICES INC. | General Testing Data Sheet |
|-------------------------------------|----------------------------|

TESTING TYPE: PART ICHUATE

| Page / of /              | 29.36 Warder and Igi<br>BO® Stitter grad (g)<br>-0.2 Eddal Mic<br>A E 5 - 1 2 - 44 Inda Trana |                                         | Port Laght (n.) | 2.18 Stop Time 04.29         | C CL                                                                                          | ALCONDER VITE VITE | 110                      | KECART - 02:36 |       |                              |                |                              |                     |
|--------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|------------------------------|-----------------------------------------------------------------------------------------------|--------------------|--------------------------|----------------|-------|------------------------------|----------------|------------------------------|---------------------|
|                          | Bueenatur (intig) 20<br>Antident teplu (15) 8<br>Statisticano - 0                             | Nevalgrint 12                           |                 | Start Time 22,<br>CEMS T.MPC | 1 是"復復                                                                                        |                    | 9 48                     | 5/7 11         | 10 50 | 12 51                        | 12 53<br>17 54 | 11 54                        |                     |
| етнор но. 5 <u>8/202</u> | - C h                                                                                         | 2 2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6               | Gross Sertier of Uncl        | Filter Includer OGM DGM<br>Temp Dutlet indet Cutlet<br>( <sup>b</sup> r) Temb Temp Temp       | 322 42 33 83       |                          |                | 46 90 | 320 47 89 85<br>320 48 91 86 | 320 49 92 83   | 321 50 92 88<br>220 51 94 89 | 102:128             |
| METH                     | Z64B                                                                                          | By By                                   | Z (()           |                              | Stack Tenup<br>Stack Tenup<br>Tenup (PF)                                                      |                    | 124 320 7                | 220            | 220   |                              | -0             | 122 321 3                    | RT/                 |
|                          | RivERS<br>SON<br>/11 Project No Z6                                                            | 1.052 Peter Cp                          | Leak chec       |                              | Orifice Gas Sample<br>Setting Volume<br>AP Journal (D) II<br>(Inthy.O) 1/0/·87                |                    | 1.9 413.90               | 2.0 424.43     | 135   | 52                           | 2.0 451.87     | 1.3 462.68                   |                     |
| FUM MO. 2                | BUNILL<br>STACK                                                                               | Open                                    | 0.0000          |                              | Min/Point Velocity<br>7.5 Pressura<br>Traverse Elapses AF<br>Point, Time (inH <sub>e</sub> O) | -15                | 101, 001,21<br>22:30 ,10 | -15<br>14      |       | 00,00 -14                    |                | 11. 00.06 2                  | Total 90,00 4.551 2 |

Circle correct brackeled [] units Train Typa denotes impingers, knockoutc, etc.

1

| AIRTECH ENVIR<br>Genera                         | NVIRONMENTAL SERVICES INC.<br>General Testing Data Sheet | ES INC.                 |                     |
|-------------------------------------------------|----------------------------------------------------------|-------------------------|---------------------|
| TESTING TYPE:                                   | PARTICULATE                                              |                         |                     |
| HUM NO. Z METHOD N                              | METHOD NO. 513/202                                       |                         | Page / of /         |
|                                                 |                                                          | Autobent Joning). 29.36 | Watel mit (a)       |
| Late 09-29-11 Projects No. 3648                 |                                                          | A A                     | Linei Type TFE      |
| A A                                             | ,<br>J                                                   | Harden 1555             | Nozzle Dia (m) .345 |
| Mater ID M-14 vs 1.0052 Philot Cp84 / Philot Cp | 3 C                                                      | 128                     |                     |
| 0.000 (fight jum) @ 2.0 (inHg)                  | Cau flow [in] Roy of page                                |                         | Port Engin (In) 20  |
|                                                 | Cross Section of Duct                                    | PERSTANCE 05:09         | Stop Time 06.59     |
|                                                 | er knoinger DGM DGM                                      |                         |                     |
| 7.50 Pressure Setting Volume Stack Terric       | Dutter iniet                                             | et: Pump Auxinary       |                     |
| AF AH Initial (1) [1] Temp (1)                  | Tents Tents                                              | A STREET, ST            |                     |
| 1 to nth 0.2 SI 102, t                          |                                                          | (CHON)                  | Nates               |
| 15:00 14 1.9 480.76 122 321 3                   | 45 97                                                    | 11 40                   |                     |
| 22:30 .11 1.5 485,69 122 321                    | 46 96                                                    | 9 49                    |                     |
| 15 7.0 491.55 122 322                           | 42 44                                                    | 12 50                   |                     |
| 11. 20 14<br>15, 50 17                          | 47 420                                                   | 11 Sc                   |                     |
| 15 2.0 508.51 12C 32C                           | 145                                                      | 12 21                   |                     |
| 60:00 14 1.9 514.38 122 321 3                   | 50 98                                                    |                         |                     |
| 3 67:30 012 116 519.65 122 320                  | 5                                                        | 11 52                   |                     |
| 122 2.0 525.50 123 271                          | 25                                                       | 12 53                   |                     |
| 521 124 123                                     | 53 96.                                                   | 11 SY                   |                     |
| VILUAT 1 200 17 3 30 410 110 - 521              | 154 48                                                   | 16 54                   |                     |
| 1-5 1-5 1-566B 1-8167                           | 72.8333                                                  |                         |                     |
|                                                 |                                                          |                         |                     |
| Circle correct bracketed [] units               |                                                          |                         | A SAL               |

\*

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

## AIRTECH ENVIRONMENTAL SERVICES INC. Impinger Weights Data Sheet

PROJECT NO. 3648

| concept in to plantary in the second | And a summer of the subscript of the sub |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The same is                          | 1 51 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 4 2 3 14 3                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Average and we are a second          | the second state and the second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Client   | Big Kivers    |            |
|----------|---------------|------------|
| Plan     | Owensbord, ly | Conto taux |
| Locatio. | stack out Let |            |
| Butter   | 9-27-11       | 1          |
| Onerator | MH            |            |

| hinast                                                                                                          | M5/202    | 1.4.12                   |     | train an                                | 122225                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|-----------|--------------------------|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| al an<br>Marina                                                                                                 | Complete  | Tora suit<br>Contente la | 网络物 | - Terring                               | land and a second s |
| mancel No.                                                                                                      | Empty     | 574                      | 714 | 140                                     | a danka si ai arsa wala da' koranger                                                                           |
| inter No. 2                                                                                                     | Empty     | 533                      | 536 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | n maanaal araana tabii - mata aana ahaa ahaa ahaa ahaa ahaa                                                    |
| noins at Po. 1                                                                                                  | 100milto  | 732                      | 930 | -2                                      | anananan (1979) Mara Tara ananan (1979) ang pang pang pang pang pang pang pang                                 |
| op long and a second | Silicated | 861                      | 881 | 70                                      | анта алимият на области и трану странит и трану разли и транит на транит и транит и транит и транит и транит и |
| 100 4 3. C                                                                                                      |           |                          |     |                                         |                                                                                                                |
| npingo 20.7                                                                                                     |           |                          |     |                                         | ······································                                                                         |
| deitional Trist                                                                                                 |           |                          |     |                                         |                                                                                                                |

| Methodolo.      | MS/202      | naula strong               | 1             | Filter No.         | 1772321       |
|-----------------|-------------|----------------------------|---------------|--------------------|---------------|
|                 | Copy with   | Constantine<br>Constantine | Pinal A 1     | an leve a superior |               |
| mpinger.No. 1   | EMOTY       | 557                        | 708           | 1<1                |               |
| mpingler, No. 2 | EMPTY       | 475                        | 478           | 2                  |               |
| npinger No. 3   | 100mi Hz O  | 736                        | 737           | T                  |               |
| npinger No. 4   | Silica Gul  | 885                        | 905           | 20                 |               |
| npingler No. 5  |             |                            |               |                    |               |
| pinge No A      |             |                            |               |                    |               |
| ioh niteNo.7    |             |                            |               |                    |               |
| - Jupia Rings   | 100 Million | 1                          |               |                    | - 1/2 SC-22-0 |
|                 |             |                            | Kolsellations | 175                |               |

|                     | 3          | 1   |                          |                   |                                                                                                                                                                                                                                    |
|---------------------|------------|-----|--------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matter No.          | M5/202     |     | 4-2                      | ter Norse         | 12724                                                                                                                                                                                                                              |
|                     |            |     | 1076 - E.9-Z             | The second second | Palatie House                                                                                                                                                                                                                      |
| nontration -        | EMPTY      | 575 | 73e                      |                   | Nacional I Constantina de la constanti<br>Interna de la constantina de la constant |
| Indologian No. 2- 1 | Empty      | 535 | 534                      |                   |                                                                                                                                                                                                                                    |
| Includer No. 3      | 100 ml 40  | +30 | 737 732                  |                   |                                                                                                                                                                                                                                    |
| ini-inger No. 4     | Silica Gel | 881 | GO5901                   |                   |                                                                                                                                                                                                                                    |
| mpinger No. 5 21    |            |     |                          |                   |                                                                                                                                                                                                                                    |
| Inpinger No. 6      |            |     |                          |                   |                                                                                                                                                                                                                                    |
| Implificer No. 7    |            |     |                          |                   |                                                                                                                                                                                                                                    |
| Additional Rinse    |            |     | hi da aren bada rene bas |                   |                                                                                                                                                                                                                                    |
|                     |            | L   | Net Weight (g)           |                   |                                                                                                                                                                                                                                    |

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Data Sheet

WETHOD NO. 26A TESTING TYPE:

| ri. | 8 |
|-----|---|
| ž   |   |
| Z   |   |
| Z   |   |

| 12 | Big Rive<br>Cerketur,<br>Stade<br>1/28/11<br>AI<br>AI<br>AI |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |    |    | Theorem 184 Amin L' 3 the second seco | 1     | 16 (Child)  |   |
|----|-------------------------------------------------------------|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|---|
|    | 6 5                                                         | Rivers | T NN | where | Project No. | イエ | 47 | 1.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | よったのと | iced filmin | - |

Flord . .365

0

Fage .

20 de H

| 175                   | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 / T    |                 |                           |        |          |        |          | T      |          |            |        |                |        |          | T     |            |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------------------|--------|----------|--------|----------|--------|----------|------------|--------|----------------|--------|----------|-------|------------|--|
| 259 Stop Time         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | And the owner of the second seco |          |                 |                           |        | F 14. 18 |        |          |        |          |            |        |                |        |          |       |            |  |
| 23259                 | 70:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                 |                           |        |          |        |          |        |          |            |        |                |        |          |       | 「おいたい」のでは、 |  |
| me                    | C TIMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anxilary |                 |                           | V V    |          |        |          |        |          |            |        |                |        |          |       |            |  |
| Start Time            | CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Permo    |                 |                           |        | 2        |        | <u> </u> | 2 -    | ale<br>- | Ň          | E      | 2              | dr.    | 100      | 00    | 1          |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DGM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cuttet   |                 | 上生                        | 00     | -8       | 00     | 50       | y y    | 200      | 12         | 6      | <u>e</u> ta KZ | 0 × 50 |          | 25    | 1-         |  |
| Duct,                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OGM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ullet    |                 |                           | ∼<br>× | 01       | 200    | 5        | 43     | -6       | 20         | 04     | 16             | 57     | R        | 88    | 10550      |  |
| Cross Suppler of Duct |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crutiet  | Temb            | E.                        | 54     | N.V      | 5      | 1.1      |        | 1        | 1 <b>X</b> | ~      | 52             | 53     |          |       |            |  |
| Cross                 | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tenco    |                 | 0>0                       | 1249   | 020      | 25(    | 251      | 25/    | 2<0      | 250        | 250    | 120            | 25     | 152      | 251   |            |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iemp     | (H)             | 020                       | R      | 250      | 251    | 0        | 251    | 056      | 751        | 251    | 250            |        | 250      | 350   |            |  |
| (inHg)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stack    | - Temp          | (H <sup>0</sup> )         | 125    | 125      | 125    | 124      | 125    | 175      | 56         | 174    | 125            | 115    | 22       | 125   | 149.00     |  |
| 21                    | and the second se | Gas Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume   | Initial (1') [] | 774.98 1                  | 24.181 | 21.387   | 745.83 | 504 (2   | 211-91 | 517,82   | 827.78     | 735.89 | F8. 548        | 81.150 | 257.45 1 | Г     | 12.2900    |  |
| (cirg] [lym]@         | and a set in second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Setting  | HΔ              | (inH <sub>2</sub> C)      | 2.31 1 | 2.14     |        | 2,1 5    | 2.20   | 2.1      | 2.2        | 7.4    | 22             | 2.2    | 2.4      | 2.1 5 | 25.8 6     |  |
| 0000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pressure | ٩F              | Time (InH <sub>2</sub> O) | 14. M  | ₹ .13    | , (2   | 14       | 115    | $h_{l}$  | 151        | 110    | , 15           | 15     | 1/3      | 14    | 4 5134     |  |
| - F                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min/Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/       | Elapsed         | Time                      | õ      | 20       | 30     | 40       | 50     | 60       | 20         | 80     | 90             | 100    | 110      | a21   | 12         |  |
| Post Leak Check       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · C.J.   | L'Iaverse       | Point                     | 1-5    | 2-2      | 33     | 2-1      | 23     | 23       |            | 2-1    | 5-1            | 4-1    | 4-2      | 4-3   | Tutal      |  |

Circle correct bracketed [] units Train Tyrre denotes impingers, knockouts, etc.

4

|               | 1 0:           | 1 - 36<br>2 - 36<br>2 - 36<br>2 - 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53<br>Ub 1 868.32<br>41.30<br>41.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| к.,           | Fage           | 1365, 00, 0<br>13-1<br>13-1<br>13-1<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5<br>13-5                                                                                                                                                                                                                                                                                                                                                     | Auraliany<br>Tomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -C/           | A              | Z<br>Britemstate (U<br>Ambrear Train<br>Stenk (THIS)<br>Stenk (D<br>Stenk (D<br>Stenk (D<br>Duct Binn (tu)<br>Duct Binn (tu)<br>Duct Binn (tu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TESTING TYPE: | METHOD NO. 261 | (in) Uri (internet content of Duci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Probe         Filtar         Imvinger           Temp         Tento         Dudiat           Temp         Tento         Dudiat           Tento         Tento         Dudiat           Tento         250         250         250           251         251         251         51           251         251         551         51           251         251         551         51           250         251         55         51           251         251         55         51           251         251         55         51           251         255         55         51           251         255         55         51           251         255         55         51           251         255         55         51           251         255         55         51           251         250         55         51           251         250         55         51           251         250         55         51           251         250         55         51           251         250         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TES           |                | Io S640<br>Phint Cp (S4<br>Leak check /<br>20 (InHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gas Sample<br>Volume Stack<br>Intrial II, II, Temp<br>ST7.13 125<br>ST7.13 125<br>S93.4.477 125<br>899.87 125<br>999.87 125<br>914.39 125<br>914.39 125<br>914.39 125<br>914.39 125<br>914.39 125<br>918.97 125<br>928.97 125<br>928.97 125<br>938.97 125<br>938.95<br>938.97 125<br>938.97 125<br>938.07 125<br>125<br>125<br>125                                                                                                                                                                                                                                                                                                                                 |
|               | o. 2           | 81 Kiris<br>Cerrentesin<br>81 A1<br>11 A1<br>111 | Min/Point Velocity Orifice<br>To Pressure Setting<br>Elepsen AF AH<br>Time in/H <sub>2</sub> OI (in/H <sub>2</sub> OI)<br>Time in/H <sub>2</sub> OI (in/H <sub>2</sub> OI)<br>To 15 2.2<br>30 16 2.1<br>50 11 2.1<br>50 11 1.6<br>10 15 1.1<br>10 10 1.1<br>10 |
|               | HUN NO.        | Client<br>Plant<br>Lescation<br>Lescation<br>Mete: Operator<br>Froke Operator<br>AH@ 1, SO<br>AH@ 1, SO<br>Pre Lian Check<br>Post Leat Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ганетов Е<br>Репит<br>2-7<br>2-7<br>2-7<br>2-7<br>2-7<br>2-7<br>2-7<br>1-1<br>2-7<br>1-1<br>2-7<br>1-1<br>1-7<br>7<br>1-1<br>2-7<br>1-1<br>2-7<br>1-1<br>2-7<br>1-1<br>2-7<br>1-1<br>1-1<br>1-1<br>1-1<br>1-1<br>1-1<br>1-1<br>1-1<br>1-1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Data Sheet

5 -

|                            |               | <u>/</u>       | فكالمحادث                                                    | en de la contracta de la contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | in nacional<br>E                       |                          |                      | y <del>n ri</del> | 1      |                                         |     | and the second | ×1   |        | т т    |                       |            |                                        |
|----------------------------|---------------|----------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|--------------------------|----------------------|-------------------|--------|-----------------------------------------|-----|----------------|------|--------|--------|-----------------------|------------|----------------------------------------|
|                            |               | to             | 2.6                                                          | in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1                  | 5                                      |                          |                      |                   |        |                                         |     |                |      |        |        |                       |            | 1. J. A.                               |
|                            |               | Page           | Water (m)]. [6]<br>Sifte. gel (g)<br>Total Via<br>Linet Type | Nozzie Ula (m)<br>Tram Type<br>Poit Lingth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stop Time             | no an ann an Anna Anna Anna Anna       |                          | Notes                |                   |        |                                         |     |                |      |        |        |                       |            |                                        |
|                            |               |                | 24.36<br>86.0<br>13-1                                        | 100<br>118<br>110 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 525                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                          |                      |                   |        |                                         |     |                |      |        |        | and an and a set of a |            | 1                                      |
|                            |               |                | (E)m(H)a)<br>(a)mo (H)<br>(A)D)                              | E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.11                  | YMANT                                  | Auxiliary                |                      | the '             |        |                                         |     |                |      |        |        |                       |            |                                        |
|                            | -             |                | Betemut<br>Ambrent<br>Stark Oh<br>Probe D                    | Critica (b.<br>Their C:<br>Duct pin (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Start Time            |                                        | Pump                     | 1 Sec. 1             | 00                | 6      | 03                                      | 6   | MK             |      |        | 2      |                       |            |                                        |
| eet                        |               | 1              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | DGM                                    | Outlet                   | (11)                 | SS 100            | 62     | 26                                      | 38  | 25             | ×1   | 22     | 83     | 1000                  | (00 S 13   | And in the second second second second |
| General Testing Data Sheet | fcl           | METHOD ND. 26A | $\sim$                                                       | A S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Duck               | er DGM                                 | Inlist                   |                      | 90                | 20     | 23                                      | 56  | 94             | 10   | 26,    | 26     |                       | 8          |                                        |
| il Testing                 |               |                | X                                                            | ind and the first second of the second secon | Cross Section of Ducc | r hupunger                             | o Cutiet                 |                      | 25                | 54     | 2 11                                    |     | in c           |      | N<br>N | 20     |                       |            |                                        |
| Genera                     | 3 TYPE:       |                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 <u>0</u>            | e Filter                               | t Temp                   | 2                    | 251               | 250    | -0-0                                    |     | 950            | 1    | 347 0  | 2      | 147                   |            |                                        |
|                            | TESTING TYPE: | M              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Prote                                  | k Temp                   |                      | 250               |        |                                         |     | 250            | 25   | 250    | ise.   | _10                   | 100        | ١                                      |
|                            |               |                | 3640                                                         | . 84<br>leck .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (inHg)                | 6                                      | Stack                    | -                    | 124               | 5113   | 125                                     | 125 | 20             | 26   | 67169  | 1 125  | 1200 2                | (1.2.1)    | }                                      |
|                            |               |                |                                                              | Pritot Cp .<br>1. zak check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                     | Gas Samole                             | Volume<br>Initial 167-11 | 960.20               | 162               | 991. 3 | 996.57                                  | 10  | 11 81 00       | 26.0 | 032.   | 1040.2 | (07 02                | Ż          |                                        |
|                            |               |                | Rivers<br>entertour, Ky<br>Ar<br>27/1 Project Ne             | 1.0101<br>14.50<br>101 [lam] @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ctur) [lum] @        |                                        | Setting<br>AH            | -                    | 55                | 1.79   | 1-100 000 000 0000 00000000000000000000 |     | 0.2            |      | 1.4.1  |        | 0.000                 | 1.1500     | )                                      |
|                            |               | M              | Bright in<br>Center<br>Specker<br>A127/11                    | 1 080,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in eau A              | Velocity                               | essure<br>AF             | (O <sub>2</sub> Ha): | 32,               | 21,    | (5                                      |     | 11             |      | .10    | 5.     | 4.153                 | The second | )                                      |
|                            |               | NO.            |                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Check                 | Min/Point                              | Elansed                  |                      | 202               | 20     | 20 50                                   | 09  | 02             | 9.0  | Coll   | N6     | 32                    |            |                                        |
|                            |               | RUN NO.        | Client<br>Plant<br>Lecation<br>Lette                         | Prohe Operator<br>Meter ID MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fost Ladi Chuck       |                                        | Laverse                  | Point .              | 1-4-1             | 4.3    | 1-1-                                    | 5   | 12.2           | 2-2  | 2-1    | 22     | Total                 | Average    |                                        |

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

ž

il al

A CONTRACTOR

K.,

AIRTECH ENVIRONMENTAL SERVICES INC.

Ŕ

Impinger Weights Data Sheet

PROJECT NO. 3648

Page / of

| dilent   | Bia Rivers,                |
|----------|----------------------------|
| Flant    | Owenstaro the leaster taun |
| Location | Stack Outlet               |
|          | 9-27-11 ini                |
| Operator | MH                         |

| formau br      | 26A           |                           | IB IS                            | Fyber No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                     |
|----------------|---------------|---------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                | a caracity.   | Tora wim<br>Contaitis (c) |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sictory                                                                                                |
| To a BI No     | Some Hosoy    | 582                       | u talaan ola simil too shiridaas | naku kalan dari dan untuk berakatika beraharan<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ದಿ ವರ್ಷಕರ್ಷ ಕರೆಯಿತ್ ೧೯೭೭ ರವಿದ್ಯಾಗಿ ಶೇಶಿಷ್ಟರಿಗಳು<br> <br>                                               |
| him to No: -   | 100metty SOUL | 624                       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |
| pulation and   | 1000LH250V    | 715                       |                                  | and a second of the second sec | 665                                                                                                    |
| noings No. 1   | Silica        | 884                       | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Anton - 1 Marcan - B Construction and - a                                                            |
| ipinger Ne:    |               |                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constraint and the anti-state proved to the Personnel of                                               |
| np/ngel No. 6  |               |                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.00                                                                                                  |
| namor No. 7    |               | ar                        | 1/OTT                            | ) rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Not De                                                                                               |
| indianal Rinse |               |                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |
|                |               |                           | 1 the Volghause                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | andra († 2007) 1922 - State Angele, andre se state for an andre se |

| RUNING          | ZI          | 1            |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|-------------|--------------|-------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Madapid #5      | 26 A        | Stain 10 🔅 🖓 | IB15        | Pilter Na.          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | contacts    |              |             | A. See Totabilities | See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| imploper bio, 1 | SO ML HSOUL | 703          | 895         | 192                 | the second contract of the second contracts in the second se |
| mprigar, fip, 2 | 100 MC HSOY | +15          | 764         | 49                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| niplagerNo. 8   | 100MI HISAI | 712          | 727         | 15                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| meloger No. 1   | Silica ful  | 798          | 812         | 24                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mpinger No. 5   |             | · · · · · ·  |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mpippe) No. 8   |             |              |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mploge/ No. 7.  |             |              |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A. Donal Rinsi  |             |              |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |             |              | CINE CONTRA | 280                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                     | 2                | 0                                                                                                                   |                |                       |    |
|---------------------|------------------|---------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----|
| Margod No.          | 26A              | TREAD                                                                                                               | IBIS           | aller Non             | NA |
|                     | arce Comtentions | Content (a)                                                                                                         | S. cinelyof    | AC THE ADDRESS OF THE |    |
| Institution and the | SOUL ASDY        | 584                                                                                                                 | 744            | 160                   |    |
| Inclinger Np. 2     | 100 ml H2SOY     | 730                                                                                                                 | 748            | 10                    |    |
| instation 16, 3 i   | 100 mL HSQ1      | 6.65                                                                                                                | 669            | 4                     |    |
| mpinger No. 4;      | Silica Gel       | 884                                                                                                                 | 913            | 29                    |    |
| Intelliger No. 6 74 |                  |                                                                                                                     |                |                       |    |
| Implitue No. 6      |                  |                                                                                                                     |                |                       |    |
| implation No. 7     |                  |                                                                                                                     |                |                       |    |
| Additional Rinse    |                  |                                                                                                                     |                |                       |    |
|                     |                  | -194 - 194 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 197 - 1<br>V | Net Weight (g) | 211                   |    |

## AIRTECH ENVIRONMENTAL SERVICES INC.

Impinger Weights Data Sheet

# PROJECT NO. 3648

2 2 2

| Client   | Big Rivers   |
|----------|--------------|
| Plint    | Ouchsboro    |
| Lopation | SHELK OUTLET |
| Ditte    | 9-29-2011    |
| Operat.  | re           |

| A Rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26A         | Mariet                    | IB 15         | ALC: NO   | n a anna an tha an tha a                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------|---------------|-----------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Marche   | Tara offi<br>Contaida (g) | hilingt inge  | Terat ing | nang termenanan samang nang sebagai se |
| Inchi No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50ML Hason  | 203                       | 888           | 195       | ana na si kutampu nya adim na mulakasa kanulak                                                                 |
| and the second sec | JOOML H2554 | 218                       | 743           | 26        | anangkanahari sanga ini tani tani tani tani tani tani tani                                                     |
| npin br be .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DOML Ha SON | לור                       | 730           | 13        | an anna - Annaich Alls a na Luis Anna - Christe Anna An Ar An An An An                                         |
| npinere Mar 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silica Gei  | 822                       | 845           | 26        | an an Andriana (ang anggan) karanang Angra (Makangkan) sa sanar sanggar perter sa                              |
| na ing aler f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                           |               |           | a da fan innenne fremerine i fremerine anne ar san san ar sa                                                   |
| 10 10 10 10 10 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                           |               |           |                                                                                                                |
| nping the t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                           | 1             |           |                                                                                                                |
| quillings I dinso.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                           |               |           |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                           | Ser Wardshind | 250       | an da an ann ann an an ann an ann ann an                                                                       |

| Ron No.         |          | Hall De Statis |               | Eliter No. |      |
|-----------------|----------|----------------|---------------|------------|------|
|                 | Cont dis | Tare without a | Piner, a      | Total (g)  | Bota |
| mpinger No.1    |          |                |               |            |      |
| mplique No, 21  |          |                |               |            |      |
| mp)nger No. 3   |          |                |               |            |      |
| molnges.Not.4   |          |                |               |            |      |
| mpingue/No. 5   |          |                |               |            |      |
| impinger ND 5   |          |                |               |            |      |
| molage No. 7    |          |                |               |            |      |
| North Millering |          | 0.02           |               |            |      |
|                 | <u> </u> |                | CLARK SIGNARY |            | s    |

| Mange No.        |            | nalmo - |                | ParerNo, |       |
|------------------|------------|---------|----------------|----------|-------|
|                  | Control of |         | Tueles - 7     |          | Notes |
| ISS NO.          |            |         |                |          |       |
| Infolmers in the |            |         |                |          |       |
| Internet No. 3   |            |         |                |          |       |
| Infante No. O    |            |         |                |          |       |
| Implinger No. 5  |            |         |                |          |       |
| india No. 6      |            |         | í              |          |       |
| miples No. 7     |            |         |                |          |       |
| Additional Rinse |            |         |                |          |       |
|                  |            |         | Net Weight (g) |          |       |

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Data Sheet

•

ł

metuls TESTING TYPE:

| 1   |  |
|-----|--|
|     |  |
| NO. |  |
| RUN |  |

52

| ~    | ľ |
|------|---|
| of   |   |
| 2    |   |
| Page |   |
|      |   |
|      |   |

|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | andres.             | A + 4 105      | i i i i i i i i i i i i i i i i i i i | 1                                       | <u> </u>          |             | <u>.</u>   |                                   | 1                           | ( *******             | 1                                                     |                    | -               | - T'A            | - New York           | 7      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|---------------------------------------|-----------------------------------------|-------------------|-------------|------------|-----------------------------------|-----------------------------|-----------------------|-------------------------------------------------------|--------------------|-----------------|------------------|----------------------|--------|
| of 1       | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                | 10-                                   | KTION                                   | . 516             |             | A WH       | 200                               |                             | 1.25                  | 24 71                                                 |                    |                 |                  |                      |        |
| Page L     | Watan Gul Lai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRU In Indiana      | Trifal VIA     |                                       |                                         | (ULL) BILT BIZZON | 1           | Train Fuge | Port Looth (In)                   |                             | Stop Time             | والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع |                    |                 |                  | Notes                |        |
|            | 29.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600                 |                | 45 5-12-2                             | - C - C - C - C - C - C - C - C - C - C | 2101              | 2/4         | Z 8 Z 2    | 20J                               |                             | 62:22                 | 21.54                                                 |                    |                 |                  |                      | te     |
|            | Barametric (Inflo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ambiant Torner 19EV | E.O.           |                                       |                                         |                   |             |            | 1. (in)                           |                             | lei -                 | Tille                                                 |                    | Pump. Auxiliary | tema             |                      | 4 N    |
|            | Baromet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | And Mark            | Static (artho) | Probe (D                              | Mounda In                               |                   | DI LINGE ID | Train IC   | Duct Dim. (in)                    |                             | Start Time            | LEM                                                   |                    | , Pump.         | Vacuum           | (inHa)               | I      |
| I          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                       |                                         |                   |             |            |                                   |                             | and the second        |                                                       | DGM                | Outlet.         | Temp             | (F)                  | 22     |
|            | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                |                                       |                                         |                   | 2           | ľ          | Col Pout                          | of page                     | of Duct               |                                                       | DGM                | Inlet           | Temp             | (m)                  | ¢<br>Ľ |
| 52         | and the state of t |                     | ļ              | K                                     |                                         | )                 |             |            | First point all the way for hourd | Gas flow [in] fouth of page | Gross Section of Duci |                                                       | Impinger           | Ouvlet          | Temp             | (±.)                 | 60     |
| METHOD NO. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ל              | _                                     | _                                       |                   | M           |            | First poin                        | Gas flo                     | Cross                 |                                                       | Filter             | Temp            | (L)              | 250                  | 750    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                  | -≦             |                                       |                                         |                   | 1           | Idni 🔊     | )                                 |                             |                       |                                                       | Probe              | Temp            | (L)              | 250                  | 250    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TY.                 |                | 3648                                  |                                         |                   |             | 20         | ×                                 | (InHg)                      | (inHg)                |                                                       |                    | Stack           | Temp             | (J)                  | 125    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Centershown Ky      |                | Project No. 36                        |                                         |                   | Γ           | e Pitot Cp | Leak check                        | 10 19                       | Ч                     | And And And An And An And And And And An              | Gas Sample         | Volume          | Initial (C) [1]  | 25.60                | 32.12  |
|            | Rivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                | Proje                                 | 56-                                     | 21                |             | 9446       | 8°02                              | . 00'3 [cfm]][pm] @         | Ketm [lpm] @          | )                                                     | Orifice            | Setting         | ΑH               | (inH <sub>2</sub> O) | 1,2    |
| J.         | Gig R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.B.W. Ison         | Stack          | 9 28 11                               | n                                       |                   |             | γq         | .8 295 Kt                         | .003                        | 2000                  |                                                       | Velocity           | Pressure        | ٩A               | (inH <sub>2</sub> O) | 15     |
| NO.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                | 9                                     | ator                                    | rator             |             | 87-W       | 1.829                             | heck                        | Check                 |                                                       | Min/Point Velocity | 2               | Elapsed          | Time                 | 5      |
| RUN NO.    | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plant               | Location       | Date                                  | Meter Operator                          | Probe Operator    |             | Meter ID   | 0H@                               | Pre Leak Check              | Post Leak Check       |                                                       | <u></u>            | in such<br>i    | Traverse Elapsed | Point                | (-4-)  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                       |                                         |                   |             |            |                                   |                             |                       |                                                       |                    |                 |                  |                      |        |

| 24:21                                                |                                                                                                                 |           |                 |                             | A second s |         |       |       |       |       |       |       |       |       | ľ       |       |       | -       | Same and a second second second second  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-----------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|---------|-----------------------------------------|
| ·/·                                                  | a de la ser o la contra de la con |           |                 | Notes                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |       |       |       |       |       |       |       | V       |       |       |         | and the second of the second            |
| 21 5                                                 |                                                                                                                 |           |                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |       |       |       |       |       |       |       |         |       |       |         |                                         |
| Tille                                                |                                                                                                                 | Auxiliary | tems            | (dF)                        | 2.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |       |       |       |       |       |       |       |       |         | Þ     |       |         | and the second statement                |
| LEM TIMUC                                            |                                                                                                                 | Pump.     |                 | (BHu))                      | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | e     | XLE   | 7     | ~     | J     | 3     | 3     | 1     | 5       | T     |       |         | and the second pro-                     |
|                                                      | DGM                                                                                                             | Outlet    | Temp            | (F)                         | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ох<br>4 | 50    | 16    | 92    | 5     | 92    | 26    | 22    | 25    | 50 50 J | 32    | 1001  | 1       |                                         |
|                                                      | DGM                                                                                                             | Inlet     | Temp            | (JE)                        | \$<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54      | 44    | 6     | 4     | 3,6   | 43    | tb    | 98    | 92    | 54      | 6     | 1126  | 920     |                                         |
|                                                      | Impinger                                                                                                        | Outlet    | Temp            | ( <u>.</u> t <sub>0</sub> ) | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45      | 56    | Sq    | 58    | 55    | 52    | 56    | 50    | S9    | 28      | 60    |       |         | 「「「「」」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」 |
|                                                      | Filter                                                                                                          | Temp      | (L)             | 250                         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152     | 250   | 258   | 246   | 5-19  | 255   | 248   | 259   | 262   | 250     | 252   |       |         | THE LANDARD                             |
|                                                      | Probe                                                                                                           | Temp      | (J)             | 250                         | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 253     | 250   | 152   | 250   | 250   | 252   | 250   | 250   | 152   | 250     | 250   |       |         |                                         |
|                                                      |                                                                                                                 | Stack     | Temp            | (4 <sub>0</sub> )           | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125     | 124   | 125   | 124   | 125   | 124   | 124   | 124   | 124   | 128     | 125   | Hom   | Shal    | $\left \right\rangle$                   |
| 2 "Although " rauges y" "Station" additionan "o' the | Gas Sample                                                                                                      | Volume    | Initial (P) [1] | 25.60                       | 32.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.08   | 43.23 | 49.38 | 55.21 | 60.55 | 66.82 | 72.90 | 78.62 | 85.11 | 50.92   | 96.97 | 1     | (134) / | 6                                       |
| )                                                    | Orifice                                                                                                         | Setting   | ΔH              | (inH <sub>2</sub> O)        | ム                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.12    | 28,   | 1.2   | 1.12  | 88.   | 1.28  | 1.12  | 1.12  | 1.28  | 1.12    | 1.17  | 13.44 | 115     | D                                       |
|                                                      | Velocity                                                                                                        | Pressure  | ٩d              | (inH <sub>2</sub> O)        | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 114     | M     | 51.   | 14    | 1     | 16    | 51.   | 114   | 91.   | HI      | Ч     | (     | (3130)  | b                                       |
| denne an easter                                      | Min/Point Velocity                                                                                              | 2         | Elapsed         | Time                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20      | 30    | hU    | So    | 3     | સ     | 8     | 8     | Ś     | 110     | 22    | 120   |         |                                         |
|                                                      |                                                                                                                 | (romo     | Traverse        | Point                       | (-H-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~       | М     | 3-3   | 2     | 3     | 2-1   | 4     | 2     | 1-1   | 2       | 3     | Total | Average |                                         |

Clircle correct bracketed [] units Train Type deriates impingers, knockouts, etc.

.

ē

ŝ

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Data Sheet

whetals

TESTING TYPE:

Sission Sission 30 Teblon 312 しまし 20 6 tl ч Port Lngth (In) Nozzle Dia (hr.) Water (m) [g] Silica yel (g) fchangt Liner Type Train Type Stop Time Total VIc Notes - age 任 いいし 29.36 5412 108 212 20 2'-せえ H2 3 Auxiliary Ambient Temp ("F) J.Wec Temp ALA VIA Barametric (InHg) (J) Duct Dim. (In) Stattic (InH2U) EM T Start Time Nozzle ID Probe ID Vacuum Fitter ID Train ID pump (BHu) Ĵ J  $\sim$ Outlet Temp 24 90 Pfoi 50 8 DGM E 57 200 5 5 50 5 91.8 1125 Temp 5 91 First point all the way (in) [out] 202 MOO Inlet 4 (H) 00 300 5 **Cross Section of Duct** 5 G Gas flow [in] (out) of page б 2 52 Impinger Ouvlet Temp 00 N 0 S (H) s t Sc S S SS 28 が S METHOD NO. 248 SS 248 517 いころ 250 842 552 282 244 Filter Tenp 257 E 249 250 5 252 252 092 Idni 🕼 252 Temp 249 Probe 250 253 251 (H) 249 249 251 249 251 - Z Shi 12-1 ET? Stack Temp K 124 124 125 124 27 J. (inHg) (InHg) 125 124 124 3648 125 72 125 Leak check Center town Pitot Cp 104.56 Initial (r<sup>3</sup>) (i) 后しとろう Gas Sample FH.121 FP.011 122,04 68.00 116.88 95.020 52.23 129.21 146.42 163-08 Volume 134.75 8 98.10 61.90 Project No. cfm] [lpm] @ [ctm])[lpm] @ 94 76 80.8 0 100 1.09 Setting (inH<sub>2</sub>O) 1.29 1 Orifice 1.39 1.17 4 28.21 178 ΨŔ 5 5 1.07 Bis Rovers -B w/1500 stack 5 2 Min/Point Velocity Pressure 367 ž (InH<sub>2</sub>O) K 9/29/11 . 003 10 2 77 Ч 9 Ĭ 4 2017 1. 5 8 Å T 2 1.8295 CNF. M-28 0 Elapsed Time Post Leak Check 100 90 R 30 120 f Pre Leak Check 0 0 ని 30 3 80 121 110 Proble Operator Meter Operator RUN NO. Fraverse Meter ID -ocation Point Average 2 2 ~ 3 2 で 2-1  $\sim$ Cleant 2 Plant T QHQ Date Total

Circle correct hracketed [] units Train Typ3 denotes impingers, knockouts, etc. AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Data Sheet

whetherly TESTING TYPE:

|   | ğ      |
|---|--------|
|   | z      |
| i | D<br>Y |

 $\sim$ 

| 4          |                   |                                |                | Teflon      | 312             |                | duit        | 22                               |                             | 07:36                        | 6:21                                     | and the second second | 2.000     | - No - 1                      | . 1977 A. P          |                                                                                                                 |        |        |        |        |        |          |        |              |        |         |
|------------|-------------------|--------------------------------|----------------|-------------|-----------------|----------------|-------------|----------------------------------|-----------------------------|------------------------------|------------------------------------------|-----------------------|-----------|-------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|----------|--------|--------------|--------|---------|
|            | Vilater (n.l) [a] | Silica cel (c)                 | Total Vic      | Liner Type  | Nezzle Dia (in) |                | T:ahr Tivpe | Port Lngth (In)                  | đ                           | Stop Time                    |                                          |                       |           |                               | Notes                |                                                                                                                 |        |        |        |        |        |          |        |              |        |         |
| Page (     | 29.63             | 80                             | 2,1            | AE S-12-2   | 312             | NIA            | IB 25       | 108                              |                             | Sizt                         | 4:19                                     |                       |           |                               |                      | an one of the second |        |        |        |        |        |          |        |              |        |         |
|            | ic (mHg)          | (1) ( <sup>0</sup> F)          | 420)           |             |                 |                |             | (111)                            |                             |                              |                                          |                       | Auxiliary | temp                          |                      | N M                                                                                                             | -      |        |        |        |        |          |        |              |        |         |
|            | Barometric (InHg) | Amblent Temp ( <sup>0</sup> F) | Static (InH2C) | Probe ID    | Nozzie ID.      | Filter ID      | Tran ID     | Duct Dim. (IN)                   |                             | Start Time                   |                                          |                       | Pump      | Vacuum                        | (jmHg)               | M                                                                                                               | ~      | 3      | ~      | M      | 2      | ~        | 3      | M            | ~      |         |
|            |                   |                                |                |             |                 |                |             |                                  |                             |                              |                                          | DGM                   | Outlet    | Temp                          | (L)                  | 91                                                                                                              | 58     | 2005,7 | 89     | 06     | 9      | 90       | 6      | 91           | 91     |         |
|            |                   |                                | -              |             | _               | 2              |             | lino (iui)                       | of page                     | of Duct                      |                                          | DGM                   | inlet     | Temp                          | (L.)                 | 91                                                                                                              | 32     | 32     | 95     | 56     | 96     | 9        | 96     | 96           | 5      |         |
| 52         |                   |                                | Č              |             |                 |                |             | First point of the way (in) yout | Gas flow [in] (out) of page | <b>Gross Section of Duct</b> |                                          | Impluger              | Outlet    | temp                          | (dF).                | 53                                                                                                              | 53     | SY     | 53     | S      | 525    | SH       | 56     | fis          | ts     | 4       |
| METHOD NO. |                   | J                              |                |             |                 | ~              |             | First poi                        | Gas flo                     | Cros                         |                                          | Filter                | Temp      | (J)                           | 250                  | 642                                                                                                             | 52     | 1241   | 2.58   | 152    | 254    | 260      | 253    | 257          | 727    | × 1 ×   |
| ME         |                   | •                              | 4              |             |                 | _ (            | [an] [u]    |                                  |                             |                              |                                          | Probe                 | Temp      | (J_)                          | 250                  | 152                                                                                                             | th2    | 247    | 250    | 422    | 252    | 246      | 255    | 523          | 251    | ç       |
|            | 8                 | k.                             | -              | 3648        |                 |                | 5           | ک<br>ک                           | (BHui)                      | (inHg)                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                       | Stack     | Temp                          | (°F)                 | 124                                                                                                             | 121    | 421    | 124    | +21    | 125    | 125      | 125    | 125          | 125    | 5       |
|            | Electric          | Contestan 1                    | -              | Project No. |                 |                | •           | I Leak check                     | 10 21                       | -1                           | Badancaya, da sum car s be to            | Gas Sample            | Volume    | Initial [1 <sup>3</sup> ] [1] | 168.50               | 174.36                                                                                                          | 180.15 | 185.69 | 191.54 | 197.86 | 203.38 | 209.66   | 215,75 | 221.48       | 227.66 | 222 200 |
|            | Rivers            | 0 vas/:0                       |                | Proje       | 5               | 24             | 4446        | 10.4                             | [cfm][pm]@                  | [cfm][lpm] @                 | ters and the second                      | Orifice               | Setting   | HΔ                            | (inH <sub>2</sub> O) | 1.09                                                                                                            | 1.09   | 86     | 1.25   | 1,25   | 44.    | 1.25     | 1-17   | 1.02         | ter.   | 5.      |
| 2          | - V 1-            | 200                            | Shek           | 11/62/6     |                 |                |             | N<br>N                           | .002 (                      | 100                          |                                          | Velocity              | Pressure  | ΔP                            | (InH <sub>2</sub> O) | 11.                                                                                                             | 114    |        | 91.    | 11     | -12    | و۔       | 3      | 51           | 517    |         |
| NO.        | 4                 |                                |                |             | rator           | arator         | M-28        | 1.829                            | Check                       | Check                        | and the second second second             | Min/Point Velocity    | 0)        | Elapsed                       | Time                 | 0                                                                                                               | 20     | 30     | 40     | 20     | 60     | <u>ب</u> | 25     | 90           | 8      | 1. 0    |
| RUN NO.    | Client            | Plant                          | Location       | Date        | Meter Operator  | Probe Operator | Meter ID    | BHG                              | Pre Leak Check              | Post Leak Check              |                                          | - "Million 198        | -         | Traverse                      | Point                | 1-{                                                                                                             | 2      | 3      | 1-2    | 2      | ~      | ~        |        | <b>ر</b> - ۱ |        | 7       |

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

ŝ [m

20

5 96

t 50

257 253

251 2+7-2

108 6

1133

250

125

3.85

124.6 1495

70.59

1.10

3344

Average

Totai

5 227

> 233, 85 239.09

> > 2 .

01/2

ę×

11 1.25 92.3

#### AIRTECH ENVIRONMENTAL SERVICES INC. Impinger Weights Data Sheet

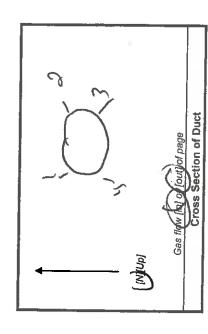
## PROJECT NO. 364

|         |   | A MAR Mart and charactering up on the | MRS 5 |
|---------|---|---------------------------------------|-------|
| 15 Some | 1 | 1                                     | 1     |
| L       | 1 | 1.1.1                                 |       |

| Gliend   | Big Rivers                 |
|----------|----------------------------|
| Plant    | Owensboro, Ky / centertown |
| Location | SPACK OUHEL                |
| Dete     | 9-27-2011                  |
| Operator |                            |

| Mediao M.      | M 29           | Trainto                        | JB25           | 178 bar Ma | NA                                                                                                             |
|----------------|----------------|--------------------------------|----------------|------------|----------------------------------------------------------------------------------------------------------------|
|                | a simisine     | Catal proj-<br>Li onimina di t | a abatim       | Terral (g) | grif (age                                                                                                      |
| NP O No.       | Empty          | 590                            | 780            | (10        | ್ ೧೯೯೬ - ನಿರ್ದೇಶಕ್ಷ, ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ಷ ಪ್ರಕಾಣದ ಮಾಡಿದ್ದಾರೆ. ಇದು ನಿರ್ದೇಶಕ್ಷ ಕಾರ್ಯಕರ್ಷ<br>                       |
| np mine No:    | 160~1 ST. 10%  | 734                            | 744            | 10         | 643 HNO3/H-03                                                                                                  |
| punite No. 3   | 100 ML 5% 10%. | 665                            | 667            | 2          | HN0=/ H=02                                                                                                     |
| Houngs Mr.     | Empty          | 553                            | 554            | 1          |                                                                                                                |
| mplhaet No. 5  | Silica         | 859                            | 8 73           | 14         |                                                                                                                |
| mpinge die e   |                |                                |                |            | 1                                                                                                              |
| implander in 7 |                |                                |                |            |                                                                                                                |
|                |                |                                |                |            |                                                                                                                |
|                |                |                                | A Charles in A | 217        | and a second |

| Rundle           | 2               |                 |              |                 |                        |
|------------------|-----------------|-----------------|--------------|-----------------|------------------------|
| MachoelNe        | M29             | Training Street | I NA         | Tilter No.      | NA                     |
|                  | Sinderes        | Tare with       | 1-38         | 2.4.4.4.83.4+6- |                        |
| mipinger.Ng 1    | Emphy           | 644             | 800          | 156             |                        |
| mpinger No. 2    | 100 ML 5% 10%.  | 641             | 654          | 13              | HNO3/H2O2              |
| Impinger No. 8   | 100 mL S/. 10%. | 612             | 622          | 10              | HNO3/H202<br>HNO3/H202 |
| mpinger.No.A     | Emphy           | 550             | 553          | 3               |                        |
| Impinger Not 5   | Silica          | 874 89          | 905          | 14              |                        |
| Impinget No. 6   |                 |                 |              |                 |                        |
| inpinger No. 7   |                 |                 |              |                 |                        |
| delitional Pln.a |                 |                 |              |                 |                        |
|                  |                 |                 | C TIDAVISION | 196             |                        |


| Sundant and        | 3               | =   |                |            |        |     |
|--------------------|-----------------|-----|----------------|------------|--------|-----|
| Managerio          | MZ9             |     | FB 25          | Dier No.   | NA     |     |
|                    | Contentiste ist |     |                | AL Stantan | A Note |     |
| ImplifieliNo. This | Empty           | 594 | 773            | 179        |        |     |
| Indeference 2 ave. | 100 ml 5%. 10%. | 733 | 739            | 6          |        |     |
| inpluit No.8       | 100mL 5%. 10%.  | 664 | 665            |            |        |     |
| impinior No. 41    | Empty           | 556 | 557            | 1          |        |     |
| impinger No.5      | Silica          | 813 | 881            | 8          |        |     |
| Impinder No. 6     |                 |     |                |            |        |     |
| Imployer No. 7     |                 |     |                |            |        | · · |
| Additional Rinse   |                 |     |                |            |        |     |
|                    |                 |     | Net Weight (c) | 191        |        |     |

#### AIRTECH ENVIRONMENTAL SERVICES INC. Oxygen and Carbon Dioxide Data Sheet

| Client        | 0.5 7            | 1057                                  | 1.61.12 | n di tan   | ÷***7 |                  |                    | L              | Page     |           | 01              |
|---------------|------------------|---------------------------------------|---------|------------|-------|------------------|--------------------|----------------|----------|-----------|-----------------|
|               |                  | ivers                                 | * 9     |            |       |                  |                    | _              |          |           |                 |
| Plant         | Durens           | buro, 14                              |         |            |       |                  |                    | For            | -(20.9-0 |           |                 |
| Location      | Stock            | Date                                  |         | 913        | 2     |                  |                    |                | CO2      | %         |                 |
| Analyzer Type | OCSAT            | Lea                                   | k Check |            |       |                  |                    |                |          |           |                 |
| Run No        | Trial No.        | %002                                  | %CO2+   | %Oz        | %O2   | Fo               |                    | Analyst        | D        | ate       | Time            |
| Ambient Air   | Check            |                                       |         |            |       |                  |                    |                | Ler-     | İ         |                 |
| Run No.       | Trial No.        | %CO3                                  | %0.+    | %D2        | %C2   | Fo Fo            |                    | Auciyst        | D        | ate       | Time            |
|               | 1                | 10.2                                  | 19.     | 2          | 9     |                  | -                  | MH             | T T      |           |                 |
|               | 2                | 10.2                                  | 19.     | 2          | q     |                  |                    |                | <u> </u> | •         |                 |
|               | 3                | 10.2                                  | 19.     | 2          | 9     |                  |                    |                |          |           |                 |
|               | Average          | 10.2                                  | 19,     | 2          | a     |                  |                    |                |          |           |                 |
| QI            | 1                | 10.8                                  | 18      | 6          | 7.8   | - (              | 2 19 1025          | mH             |          |           | tira<br>Sotin ⊒ |
|               | 2                | 10.8                                  | 18      | 8          | 8     |                  |                    |                |          |           |                 |
| Ĩ             | 3                | 10.8                                  | 18      | 8          | 8     | -                |                    |                |          |           |                 |
|               | Average          | 10.8                                  |         |            |       |                  |                    |                | /        |           |                 |
| 3             | 1                | 10.8                                  | 18.     | 8          | 8     | The later second |                    | MA             |          | ľ         | -               |
|               | 2                | 10.8                                  | 18      | X          | 8     |                  |                    |                |          |           | <u> </u>        |
|               | 3                | 10.4                                  | 18.     | Y I        | 2     |                  |                    |                |          |           |                 |
| F             | Average          | 10.8                                  | 18      | F          | 0     | -                |                    |                |          |           |                 |
|               | 1                |                                       |         |            | ·C    | -                | 1                  |                |          |           |                 |
|               | 2                |                                       |         | _          | -     |                  | -                  |                |          |           | ,,              |
| F             | 3                |                                       |         |            |       | -                |                    |                |          |           |                 |
| -             | Average          |                                       |         |            |       | -                |                    |                |          |           |                 |
|               | 1                | · · · · · · · · · · · · · · · · · · · |         |            | -1-   |                  |                    | - B2-1         |          | II. 2/1   | .e. a. me       |
|               | 2                |                                       |         |            |       |                  |                    |                | L        |           |                 |
|               | 3                |                                       |         |            |       | -                |                    |                |          |           |                 |
|               | Average          |                                       |         |            |       | -                |                    |                |          |           |                 |
|               | 1                |                                       |         |            |       |                  | -                  |                | 1        |           |                 |
|               | 2                |                                       |         | , <u> </u> |       |                  |                    |                | l        |           |                 |
| -             | 3                |                                       |         |            |       | -                |                    |                |          |           |                 |
| H             | Average          |                                       |         |            |       | -                |                    |                |          |           |                 |
|               | Average 1        |                                       | 1       |            |       |                  |                    |                |          |           | -               |
|               | 2                |                                       |         |            |       |                  |                    |                |          |           |                 |
|               | 3                |                                       |         |            |       | -                |                    |                |          |           |                 |
| -             |                  |                                       |         |            |       | -                |                    |                |          |           |                 |
|               | Average          |                                       |         |            |       |                  | - 1 <b>- 1</b> -1  |                |          |           |                 |
|               | 1                |                                       |         |            |       |                  |                    |                |          |           |                 |
| -             | 2                |                                       |         |            |       | 4                |                    |                |          |           |                 |
|               | 3                |                                       |         |            |       | 4                |                    |                |          |           |                 |
|               | Average          |                                       | - 1.1   |            |       |                  |                    |                |          |           |                 |
|               | 1                |                                       | _       |            |       |                  |                    |                |          |           |                 |
|               | 2                |                                       |         |            |       |                  |                    |                |          |           |                 |
|               | 3                |                                       |         |            |       |                  |                    |                |          |           |                 |
|               | Average          |                                       |         |            |       |                  |                    |                |          |           |                 |
| otes:         |                  |                                       |         |            |       | Expected I       | F <sub>o</sub> Ran | ges            |          |           |                 |
|               | ir check to veri |                                       |         |            |       |                  |                    | te 1.015-1.130 | Nat      | . Gas 1   | .600-1.83       |
| asurements m  | ust be made to   | the nearest 0.2<br>erformed for e     |         |            |       | Bituminou        | s                  | 1.083-1.23     | 0 Wo     | od Bark 1 | .000-1.126      |

Run No.

| Big Rivers | Centerleur Ky | Steck    | 11-90-5 | 3648        | er CS        |
|------------|---------------|----------|---------|-------------|--------------|
| Client     | Plant         | Location | Date    | Project No. | Meter Reader |



36

21

Barometric (in. Hg)

Static (inH<sub>2</sub>O)

đ

Page

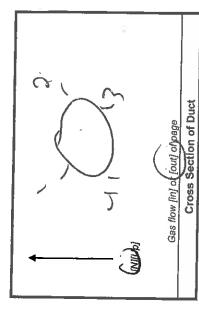
AIRTECH ENVIRONMENTAL SERVICES INC. Method 30B Data Sheet 5

Ambient Temp. (<sup>0</sup>F)

Start Time Stop Time

C

|                  | 49934          | (îh. Hg)       | (ìn. Hg)        |  |
|------------------|----------------|----------------|-----------------|--|
|                  | ۲d             | 15             | 0               |  |
| <i><b>Q</b></i>  | M35A           | ipm @          | Ipm @           |  |
| ANSNIKED         | 5 Meter ID     | ,000           | 200             |  |
| Sample Train A ( | Trap ID 150 58 | Pre Leak Check | Post Leak Check |  |


|               |                   | Notes  | proor      | 24.75 |           |       |       |       |       |              |       |   |    |      |        |         |   |
|---------------|-------------------|--------|------------|-------|-----------|-------|-------|-------|-------|--------------|-------|---|----|------|--------|---------|---|
| Pump          | Vaccum<br>(in Ha) | /6     | 5          | 5     | <u>دا</u> | 2     | -     | 5     | 5     | 7            | 5     |   |    |      |        |         |   |
| DGM           | ( <sup>0</sup> F) |        | 30         | 89    | 57        | 100   | 105   | (a)   | 104   | 11           | 611   |   |    |      | 1      | 99 44   |   |
| Stack         | ( <sup>0</sup> F) |        | 194        | e el  | 501       | c. (i | 001   | 661   | 607   | 507          | 133   |   |    |      | to to  | 10266   | Ń |
| Gas<br>Sample | Initial [I]       | 0.0    | 3.16       | 6-37  | 9.35      | 13,46 | 15.30 | 18.36 | 11.34 | <u>Julia</u> | 57.34 |   |    |      | 21 3ay |         |   |
| Flow          | Setting           |        | <u>ر</u> ر | 6     | r         | Ú     | Ċ.    | Ĺ,    | 5     | \$           | 51    | X | 26 | لا ل |        |         |   |
|               | Elapsed           | , Time | 2          | 30    | 20        | 25    | 2     | 60    | 5     | 80           | 90    |   | ŝ  |      | Total  | Average |   |

| Min/Point |         | Gas         |                   |                   |                   |         |
|-----------|---------|-------------|-------------------|-------------------|-------------------|---------|
| 0         | Flow    | Sample      | Stack             | DGM               | Pump              |         |
| Elapsed   | Setting | Initial [I] | ( <sup>0</sup> F) | / <sup>0</sup> E1 | Vaccum<br>(in Ha) |         |
| Time      |         | 00          |                   |                   | (R )              | Notes   |
| 2         | . 3     | 3 50        | hel               | 80                | r                 | Yeek at |
| 00        | 5       | 648         | CO                | 5.2               | ~                 | 3       |
| 3         | E.      | 9.53        | 1.73              | 5                 | 5                 |         |
| n<br>n    | 13      | 1) 4/2      | 201               | 3                 | R                 |         |
| 50        | ć.      | 04.51       | 199               | 50                | ľu                |         |
| 60        | 23      | 15.33       | 129               | 5                 | 2                 |         |
| 20        | ?       | 91.1C       | 123               | 1039              | 2                 |         |
| ŝ         | 2       | 20.00       | 22                |                   | 1                 |         |
| 90        | 51      | 3750        | 55                | 01-               | 2                 |         |
|           |         |             | 1                 |                   |                   |         |
|           |         | (           |                   |                   |                   |         |
|           |         | 1           | 1                 |                   |                   |         |
| Total     |         | 21.5        | A<br>A<br>A<br>A  | 84)               |                   |         |
| Average   |         |             | on COL            | P.192.            | cl                |         |
|           |         |             |                   |                   |                   |         |

AIRTECH ENVIRONMENTAL SERVICES INC. Method 30B Data Sheet

3 Run No.

| Client [3:4] River |
|--------------------|
|--------------------|



| 1     | · |  |
|-------|---|--|
| of    |   |  |
| <br>1 | / |  |
| Page  |   |  |
|       |   |  |

| (in. Hg) 2 <sup>e</sup> L 36 | 0                           | mp. (°F), &O                    | 0:18 am    | 3:48a     |  |
|------------------------------|-----------------------------|---------------------------------|------------|-----------|--|
| Barometric (in. Hg)          | Static (InH <sub>2</sub> O) | Ambient Temp. ( <sup>0</sup> F) | Start Time | Stop Time |  |

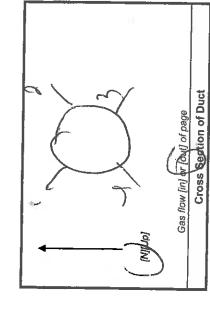
Sample Train A

| 1994            | (in. Hg)       | (in. Hg)        |
|-----------------|----------------|-----------------|
| ЪХ              | 10             | 0               |
| AScM            | Ipm @          | lpm @           |
| Meter ID        | 30             | 000             |
| Trap ID C110 00 | Pre Leak Check | Post Leak Check |

|           |        |                   | Notes |      |        |       |          |       |       |      |             |      |     |   |       |                  | i<br>i |
|-----------|--------|-------------------|-------|------|--------|-------|----------|-------|-------|------|-------------|------|-----|---|-------|------------------|--------|
|           | Pump   | Vaccum (in Ho)    | 6     | 2    | 2      | Ľ,    | 5        | 2     | 5     | 2    | 5           | 5    |     |   |       | 2                |        |
|           | DGM    | ( <sup>0</sup> F) |       | S    | N.     | 88    | 98       | 00    | 103   | 105  | 10          | 109  |     |   | ALA   | 3.60             |        |
|           | Stack  | ( <sup>0</sup> F) |       | 101  | 101    | 101   | 121      | ICI   | 191   | 120  | <u>ee</u> 1 | 127  | 2.2 |   | 640   | 161 151          | K      |
| Gas       | Sample | Initial []]       | 0     | 3.16 | 50.9   | a. 36 | 25 CV    | 15.40 | 18:50 | 51.6 | 54.56       | 2769 |     | C | 27 62 | $\left[ \right]$ |        |
|           | Flow   | Setting           |       | ξ,   | 5      | \$    | ų        | i     | ~     | ۲.   | vi          | ŗ,   |     |   |       |                  |        |
| Min/Point | ລ      | Elapsed           | Time  | 2    | )<br>) | 30    | ۍ<br>ارد | 5     | 60    | 70   | 60          | 06   |     |   | Total | Average          |        |

|         | Ň     |
|---------|-------|
|         | 9     |
|         | Meter |
|         | 5     |
| _       | 24    |
| Train B | 3     |
| Sample  | ap ID |
| κñ      | Ē     |

| Y'A 1.0017    | (in Hg)        | <i>[O</i> (in. Hg) |
|---------------|----------------|--------------------|
| 25.8          | lpm @          | Ipm @              |
| √  Meter ID   | .000           | 000                |
| Trap ID くプイ 3 | Pre Leak Check | Post Leak Check 🕞  |


l

|                                    |                        |               |                            |        | 1         |        |         |
|------------------------------------|------------------------|---------------|----------------------------|--------|-----------|--------|---------|
|                                    | Notes                  |               |                            |        | 10 (2) 37 |        |         |
| Pump<br>Vaccum<br>(in Hg)          | n e                    | hr            | en                         | 100 10 | 1         |        |         |
| DGM<br>Temp<br>( <sup>0</sup> F)   | 838                    | of single     | 100                        | 500    | 100       | 578    | 975     |
| Stack<br>Temp<br>( <sup>0</sup> F) | 101                    | 101           | le i                       | cel    | 60        | 643    | 11.13   |
| Gas<br>Sample<br>Initial [I]       | 0-0-0-<br>2-98<br>1-05 | 4.16<br>10.19 | CC -51                     | 21.10  | A. Le     | 11-1-6 |         |
| Flow<br>Meter<br>Setting           | ν'n                    | Ú.            | . r                        | Ú.     |           |        |         |
| Min/Point<br>C<br>Elapsed          |                        | 30            | S<br>S<br>S<br>S<br>S<br>S | 205    | 90        | Total  | Average |

AIRTECH ENVIRONMENTAL SERVICES INC. Method 30B Data Sheet

Run No.

| Client       | B. 4 R. Ver  |
|--------------|--------------|
| Plant        | Certerbour K |
| Location     | Star .       |
| Date         | 1-60-6       |
| Project No.  | 3648         |
| Meter Reader | Ç, Ç         |
|              |              |



| - | of   | <br>29.36           | ~              |
|---|------|---------------------|----------------|
|   | Page | Barometric (in. Hg) | Ctatio (ind O) |

| Barometric (in. Hg)                                           | 29,36       |
|---------------------------------------------------------------|-------------|
| Static (InH <sub>2</sub> O)<br>Amhient Temn / <sup>0</sup> E\ | 0<br>7<br>7 |
| Start Time                                                    | 5:09        |
| Stop Time                                                     | 6:34        |
|                                                               |             |

Sample Train A

| rap ID   44()  | Meter ID | 5     | ۶ų | 19994    |
|----------------|----------|-------|----|----------|
| Pre Leak Check | 1000     | lpm @ | S  | (in. Hg) |
| ost Leak Check | ,000     | lpm @ | e  | (In_Hg)  |

|               |                   | Notes |      |      |     |       |       |            |       |       |       |   |  |       |                         |  |
|---------------|-------------------|-------|------|------|-----|-------|-------|------------|-------|-------|-------|---|--|-------|-------------------------|--|
| Pump          | Vaccum<br>(in Ha) |       | 2    | 5    | 5   | 5     | 5     | 5          | 2     | 5     | 5     | - |  |       |                         |  |
| DGM           | ( <sup>°E)</sup>  |       | S    | 202  | 93  | 97    | 101   | 501        | 106   | 108   | 104   |   |  | ASS A | 798.44                  |  |
| Stack         | Temp              |       | 101  | 101  | (0) | ee1   | 000   | 132        | eer   | EC1   | 201   |   |  | King  | 191 el                  |  |
| Gas<br>Samule | Initial [I]       | 000   | 3,19 | 6.02 | 625 | 12.38 | 15,43 | 18.40      | 21.35 | 15 NG | 37.21 |   |  | ACT C | $\overline{\mathbf{N}}$ |  |
| Flow          | Meter<br>Setting  |       | 13   | ٤.   | ŗ   | -     | ŗ     | ņ          | ù     | ņ     | د،    | , |  | -     |                         |  |
| Min/Pgint     | Elapsed           | Time  | 0    | Ś    | 2   | 2     | 50    | <i>S</i> C | 2     | 60    | 30    |   |  | Total | Average                 |  |

| m      |  |
|--------|--|
| Train  |  |
| Sample |  |
|        |  |

| 1017          | (in Hg)        | (in. Hg)        |
|---------------|----------------|-----------------|
| РÅ            | 27             |                 |
| 258           | Ipm @          | Ipm @           |
| Meter ID      | 000,           | 2000            |
| Trap ID 87446 | Pre Leak Check | Post Leak Check |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min/Point | i       | Gas         |         |        |        |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------------|---------|--------|--------|-------|
| d setting initial [1] terrip terrip vacuum ( $^{P}$ ) ( $^{$                                                        | S         | Flow    | Sample      | Stack   | DGM    | Pump   |       |
| 5.20     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10       1     10     10     10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lapsed    | Setting | Initial [I] | (lenp   |        | Vaccum |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time      | )       | 0.00        | -       |        | (R)    | Notes |
| - 401 001 80.00<br>- 400 80.00<br>-                                                                                                                                                                                                   | 0         | 5       | 90.54       | 101     | 83     | 5      |       |
| - 101 11-5 5.<br>101 001 001 001 001 001 001 001 5.<br>101 001 001 001 001 001 001 001 001 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | .3      | 1, .05      | 1.61    | 20     | 4      |       |
| 19.16 122 91.61<br>101 661 10.16<br>101 661 10.16<br>101 661 10.16<br>101 661 65<br>101 661 65<br>101 661 80<br>101 661 80<br>101 80<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | 0         | 3       | 5           | 101     | 53     | 2      |       |
| 1 cet 1 1.51 E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2         | . 3     |             | (Da     | 66     | 5      |       |
| 0 60.161 10.31 5.<br>1 601 8010 5.<br>1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2         | 5.      | 15.14       | Cel     | 0      | 5      |       |
| 1 661 10.10 C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2         | ŗ.      | 18.24       | Cer     | (03    | 5      |       |
| 1 cer 65.76 Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20        | 0       |             | 601     | 106    | 7      |       |
| 0 60.161 80.00 C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a         | 5       | 43          | 193     | 108    | 2      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0         | Ĉ       | 30.06       | 100     | 109    | 2      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |             |         |        |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |             |         |        |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |             |         |        |        |       |
| 1200 131.69 10 X 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al        |         | 3012        |         | 182    |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage      |         |             | 13(-00) | 19 K.Y | -      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         | ,           | •       |        |        |       |

2

Laboratory Data



# Gravimetric Analytical Report

Performed for Big Rivers Wilson Station-Petcoke Project No. 3648B October 12, 2011

Analyst: 🕻 ames Christ

The following data has been reviewed for completeness, accuracy, adherence to method protocol and compliance with quality assurance guidelines.

Kyle L. Ent Date: 10-13-2011 Reviewer:

601 COUNTRY CLUB DRIVE, SUITE A, BENSENVILLE, ILLINOIS - TEL: 630-860-4740 FAX: 630-860-4745

## **Table of Contents**

| PROJECT SUMMARY                                | 2 |
|------------------------------------------------|---|
| General                                        |   |
| Analytical Equipment                           |   |
| Sample Remarks                                 |   |
| QA/QC                                          |   |
| Condition of Samples When Received             | 2 |
| Table 1. Summary of EPA Methods 5B/202 Results | 3 |

#### APPENDIX

Data Entry Raw Data Chain of Custody Calibration Data



### **Project Summary**

#### General

| Project Information        |                    |
|----------------------------|--------------------|
| Date Received              | October 1, 2011    |
| Analytical Protocol        | EPA Methods 5B/202 |
| Number of Samples Received | 12                 |

#### **Analytical Equipment**

| <b>Equipment Information</b> | Manufacturer | Model  | Serial No. |
|------------------------------|--------------|--------|------------|
| Analytical Balance           | Ohaus        | AV114C | 8028031056 |

#### Sample Remarks

All samples were analyzed according to the EPA Method 5B Section 11 and EPA Method 202 Section 11. A summary of the analytical results is presented in Table 1.

#### QA/QC

All sample weights were taken until two consecutive weights were within 0.0005g. The Ohaus balance was calibrated daily in addition to the yearly full scale calibration that was performed by Automated Scale Corporation on April 12, 2011.

#### **Condition of Samples When Received**

Samples were received in good condition.



## Table 1. Summary of EPA Methods 5B/202 Results

| Run 1  | Run 2                              | Run 3                                                                                                             |
|--------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 0.0295 | 0.0433                             | 0.0417                                                                                                            |
| Run 1  | Run 2                              | Run 3                                                                                                             |
| 0.0093 | 0.0100                             | 0.0091                                                                                                            |
| Run 1  | Run 2                              | Run 3                                                                                                             |
| 0.0387 | 0.0533                             | 0.0509                                                                                                            |
|        | 0.0295<br>Run 1<br>0.0093<br>Run 1 | 0.0295         0.0433           Run 1         Run 2           0.0093         0.0100           Run 1         Run 2 |



# Appendix

- Data Entry
- Raw Data
- Calibration Logs



## Data Entry

- Filter Data Entry
- Front-Half-Rinse Data Entry
- Organic Fraction Data Entry
- Inorganic Fraction Data Entry



| Method 5B/202 Parameters              |                 | Run 1    | Run 2   | Run 3   | Blank   |
|---------------------------------------|-----------------|----------|---------|---------|---------|
| Filter                                |                 | 12223    | 12222   | 12224   |         |
| Filter tare weight (g)                | Trial 1         | 0.3407   | 0.3406  | 0.3422  |         |
|                                       | Trial 2         | 0.3403   | 0.3405  | 0.3422  |         |
|                                       | Average         | 0.3405   | 0.3406  | 0.3422  |         |
| Filter final weight (g)               | Trial 1         | 0.3454   | 0.3453  | 0.3471  |         |
|                                       | Trial 2         | 0.3449   | 0.3458  | 0.3476  |         |
|                                       | Average         | 0.3452   | 0.3456  | 0.3474  |         |
| Filter net weight, m <sub>f</sub> (g) |                 | 0.0046   | 0.0050  | 0.0052  |         |
| M Front Half Wash                     | Beaker ID       | H6       | H7      | H8      | H5      |
| Beaker tare weight (g)                | Trial 1         | 3.5970   | 3.5790  | 3.5530  | 3.5588  |
|                                       | Trial 2         | 3.5978   | 3.5795  | 3.5534  | 3.5587  |
|                                       | Average         | 3.5974   | 3.5793  | 3.5532  | 3.5588  |
| Beaker final weight (g)               | Trial 1         | 3.6226   | 3.6175  | 3.5902  | 3.5587  |
|                                       | Trial 2         | 3.6222   | 3.6180  | 3.5897  | 3.5592  |
|                                       | Average         | 3.6224   | 3.6178  | 3.5900  | 3.5590  |
| Volume of Wash, V <sub>aw</sub> (ml)  | -               | 190      | 190     | 195     | 200     |
| Beaker weight, m <sub>a</sub> (g)     |                 | 0.0250   | 0.0385  | 0.0368  | 0.0002  |
| Drganic Fraction                      |                 |          |         |         |         |
| -                                     | Weighing tin ID | H1       | H2      | H3      | H4      |
| Veighing tin tare weight (g)          | Trial 1         | 3.5833   | 3.5805  | 3.5793  | 3.6046  |
|                                       | Trial 2         | 3.5831   | 3.5805  | 3.5791  | 3.6048  |
|                                       | Average         | 3.5832   | 3.5805  | 3.5792  | 3.6047  |
| /eighing tin final weight (g)         | Trial 1         | 3.5864   | 3.5856  | 3.5826  | 3.6046  |
|                                       | Trial 2         | 3.5861   | 3.5851  | 3.5821  | 3.6048  |
|                                       | Average         | 3.5863   | 3.5854  | 3.5824  | 3.6047  |
| olume of Wash, Vaw (ml)               | C C             | 230      | 245     | 230     | 210     |
| Veighing tin net weight, ma (g)       |                 | 0.0031   | 0.0049  | 0.0031  | 0.0000  |
|                                       | Beaker ID       | 416      | 106     | 304     | 315     |
| eaker tare weight (g)                 | Trial 1         | 101.6381 | 81.2743 | 83.3557 | 81.6597 |
|                                       | Trial 2         | 101.6376 | 81.2739 | 83.3555 | 81.6596 |
|                                       | Average         | 101.6379 | 81.2741 | 83.3556 | 81.6597 |
| eaker final weight (g)                | Trial 1         | 101.6444 | 81.2794 | 83.3622 | 81.6599 |
| 0 (0)                                 | Trial 2         | 101.6444 | 81.2798 | 83.3617 | 81.6601 |
|                                       | Average         | 101.6444 | 81.2796 | 83.3620 | 81.6600 |
| olume of Wash, Vaw (ml)               |                 | 550      | 450     | 530     | 225     |
| eaker net weight, ma (g)              |                 | 0.0066   | 0.0055  | 0.0063  | 0.0003  |

Raw Data

- Filter Gravimetric Data Sheets
- Beaker Gravimetric Data Sheets
- Tin Gravimetric Data Sheets



#### AIRTECH ENVIRONMENTAL SERVICES INC.

Filter Gravimetric Data Sheet

| Run No.        | Proj. No./Location         | Annoaranco     |          | Weight         | Date / Time   | Mount              | Date / Time      | Mounts   | Date / Time      | Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|----------------------------|----------------|----------|----------------|---------------|--------------------|------------------|----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101/110.       |                            |                | Tare     | 0.3417         | 7/15/109      | Weight             | 40.1             | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | BUZE<br>SLROBEER<br>OUTLET |                | Tech     | C.591 8        |               | 0.7110             |                  |          | 1 10 II          | <u>⊢′</u> ✓──                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Filter ID      | THE FE                     | WIFE           | Final    | 0,43:3         | 7128 1036     | allai              | 1/199:56         | 1006     | 291C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fater ID       | SLEODUE                    | 6              | <u> </u> | 0.425          |               | 0.4475             | 9/297-56         | 0.4299   | 9 25 16.09       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12214          | our                        |                | Tech     |                | TG            |                    | [                |          | <u> </u>         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Run No.        | 1                          |                | Notes    | 184-1b-A       | Dets (Time    | Marcula            | Dete 17the       |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RUIT NO.       | Proj. No./Location         | Appearance     | Tare     | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24             | 3675                       |                | Tech     | 0.74 90        |               | 0.3438             |                  | <u> </u> | <u> </u>         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | SLRUBBEIL                  | WHITE          | <u> </u> |                | DD            | 2 1/2              |                  |          | A                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filter ID      | SLEUTE                     | W              | Final    | 0.4217         | 9128 1037     | 6:4210             | 9/24 9:55        | 6.4211   | 9/29 16:10       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2215           | OUTLET                     |                | Tech     |                | 16            |                    | · /              |          | <u>_//</u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            |                | Notes    |                |               |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Run No.        | Proj. No./Location         | Appearance     |          | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23             | 2: 75                      |                | Tare     | 10-3430        |               | 0.3427             |                  |          | <u> </u>         | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | SUTS<br>DURUBBER<br>DUTLET | WHITE          | Tech     |                | 00            |                    | DD               |          |                  | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Filter ID      | DURUBIST                   | 0.1            | Final    | 6.3823         |               | 0.3815             | 9/24 9:55        | 0.3819   | 4/24 16:10       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mil            | DUTLE                      |                | Tech     |                | TG            |                    |                  |          | · /              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2216           | 1                          |                | Notes    |                | ×             |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Run No.        | Proj. No./Location         |                |          | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3              |                            |                | Tare     | 0.3577         | 415 1114      | 0 3397             | 7/15 1800        |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SLEVPBER<br>DETLET         | WHITE          | Tech     |                | DD            |                    | DD,              |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filter ID      | LIEVBBC                    | , e            | Final    | 0.4091         | 9128 104      | 0,-108/45          | 9/29 9:54        | 0.4086   | 9/29/6:11        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1210           | OFTLE                      |                | Tech     |                | 76            | 26                 | 1                |          |                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2217           |                            |                | Notes    |                |               |                    |                  |          | 100              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Run No.        | Proj. No./Location         | Appearance     |          | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                            |                | Tare     | 3. 3411        | 715 1115      | 0.3410             | 415 1801         |          |                  | . V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                            |                | Tech     |                | GO            |                    | 00               |          | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filter 1D      |                            |                | Final    |                |               |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1            |                            |                | Tech     |                |               |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3218           |                            |                | Notes    |                |               |                    |                  |          | <b>.</b>         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Run No.        | Proj No./Location          | Appearance     |          | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5              | 3453                       |                | Tare     | 9 3437         | 715 11/6      | 0.3:437            | 715 1801         |          |                  | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1              |                            |                | Tech     |                | CO            | <u></u>            | 52               |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filter ID      | 031 32                     | Bils           | Final    | 0.3988         | 9 20 7:12     | 0.3990             | 9/216:47         |          |                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 0            |                            | 29             | Tech     |                | 1100.0010     | <i>U</i> . * 1 · - | 11-10-17         |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2219           | 5 202                      | ì              | Notes    | ļļ             |               |                    | (                |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Run No.        | Proj. No./Location         | Appearance     | notos    | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                            | - libertrainen | Tare     | 0.3400         | His 1110      |                    |                  | TOBIL    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2              | 131/22                     | A              | Tech     |                |               | 0.7100             |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filter ID      | 133/32<br>5/302<br>3453    | B13            |          | 94163          | DD<br>Lutealo | 0.4171             | 100<br>第1276:4月  |          |                  | in the second se |
|                | 51.03                      | 700            | Tech     | <u>טשיר: ט</u> | 9/20 7:11     | <u>0.71/1</u>      | 112.0.1          |          |                  | Queen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2220           | 34''                       | V.             |          |                | /             |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Run No.        | Proj. No./Location         | Appearance     | Notes    | Weight         | Date / Time   | Weight             | 7<br>Date / Time | Wataba   | Data / Time      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                            | Ahearance      | Tare     | 0.3407         |               |                    | 115 1805         | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 100 35 10C                 | 1.00           |          | 10494          | 415 1117      | C 7-10-1           |                  |          |                  | V -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | 37 510                     | p~             | Tech     | a HUA.         | abaril        | 0.1100             | 00               | alloant  |                  | in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Filter ID      | 12                         | 1017           |          | 0.4400         | 9/20-711      | 04357              | 9/216:48         | 6.4384   | 9/11 17:03       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2221           | 3.37                       | ۳ (۲           | Tech     | 1              | 0.14          |                    | 4                | 1        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                            |                | Notes    | 04524          | 9/24 10:FY    |                    | 305912310:       |          |                  | 7:45 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Run No.        | Proj. No./Location         | Appearance     |          | Weight         | Date / Time   | Weight             | Date / Time      | Weight   | Date / Time      | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                            |                | Tare     | 0.342          |               | 03405              | 415 1204         |          |                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ĵ.             |                            |                | Tech     |                | DD            |                    | Ga               |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2              | 3610                       | 00             | Tech     |                |               |                    |                  |          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| よ<br>Filter ID | 3670                       | Bot            | Final    | 0.3462         | 10/7 1225     | 0.3-153            | 10/10/076        | 03458    | 12/11 8938       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| J<br>Filter ID | 3648<br>Wilson             | Pots           |          |                |               | 03-153             | 10/10/020        | 0.3458   | 10/11 6938<br>KE | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

2

#### AIRTECH ENVIRONMENTAL SERVICES INC. Filter Gravimetric Data Sheet

| Run No.                  | Proj. No./Location | Annoarange  |          | Weight                                 | Deta / Time     | Marcha     | Data (Time       | Martin 1 | Deter 1          |                         |
|--------------------------|--------------------|-------------|----------|----------------------------------------|-----------------|------------|------------------|----------|------------------|-------------------------|
|                          |                    | hyphearauce | Tare     | 0.3407                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| 1                        | 3648<br>Wilton     |             | Tech     |                                        |                 | 0.50       |                  |          | +                |                         |
| Filter ID                | 36                 | O rough     | Final    | 0.001/04                               | 100             | 0.540.1    |                  |          | +                |                         |
|                          | 1. 1150            | 12 35       | Tech     | 0.3454                                 | 10/7 1227<br>KE | 0.3449     | 10/10/0:23       |          |                  | r -                     |
| 12773                    |                    | P           | H        |                                        | KE              |            | <u> </u>         |          |                  |                         |
| Run No.                  | Proj. No./Location | Annonenee   | Notes    | Maraba                                 | Data (Time      | 100-10-0-4 | Dete (T)         |          | 1                |                         |
|                          | Proj. No./Location | Appearance  | Tare     | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| 3                        | 30018              | . n         | <u> </u> | <u>0.</u> 3422                         |                 | 0.3422     | 415 1800         |          | +                |                         |
| Filter ID                | 30 1400            | Brun        | Tech     |                                        | DD              | 4          | DD               |          |                  |                         |
| Filter ID                |                    | 1 to        | Final    | 0.3479                                 |                 | 6.3471     | 10/10/0.24       | 03476    | 10/11 0940       |                         |
| 12224                    |                    | 1 V         | Tech     |                                        | KE              |            | <u> </u>         | ·        | KE               |                         |
|                          |                    |             | Notes    |                                        |                 |            |                  |          |                  |                         |
| Run No.                  | Proj. No./Location | Appearance  | Tarra    | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| 6                        | 3644<br>Millen     |             | Tare     | 0.3411                                 |                 | 0.3412     | 15 1807          |          |                  | $\checkmark$            |
|                          | all CM             | ta          | Tech     | 0.0                                    | ,20             |            |                  |          |                  |                         |
| Filter ID                | l from             | white       | Final    | 0.3412                                 | 8 30 14:10      | 013-112    | E131 11152       |          | · ·              | ~                       |
| 1.000-                   |                    |             | Tech     |                                        | 1               |            | T'a_             |          |                  |                         |
| 12225                    |                    |             | Notes    |                                        |                 |            |                  |          |                  |                         |
| Run No.                  | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| 5                        | 3644               |             | Tare     | 0.3399                                 |                 | 0.354      | Flix, 1808       |          |                  | · Var and               |
| <sup>ر</sup> بر <b>ب</b> | h                  | L.          | Tech     |                                        | 170             |            | 00               |          |                  |                         |
| Filter ID                | Min                | white       | Final    | 0.3400                                 | 83014:10        | 0.3100     | \$131 11:01      |          |                  | 1                       |
|                          |                    | ľ           | Tech     |                                        | )               |            | 76               |          |                  |                         |
| 13200                    |                    |             | Notes    |                                        | 1               |            |                  |          | <u> </u>         |                         |
| Run No.                  | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| - J                      | 14                 |             | Таге     | 0.3416                                 | 751130          | 0.3413     | 715 1808         |          |                  | $\checkmark$            |
| 7                        | 30                 | 1429        | Tech     |                                        | 日<br>日          |            | GCT              |          |                  |                         |
| Fliter ID                | 6Will              | w           | Final    | 03116                                  | \$130 14:11     | 0-2404     | 8/31 11:47       | 9.5409   | 9/2 10:03        | ~                       |
| 0                        | 01                 |             | Tech     |                                        |                 |            | TG               |          |                  |                         |
| 2237                     |                    |             | Notes    |                                        |                 |            |                  |          | <del>ا ر ا</del> |                         |
| Run No.                  | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| *                        | 3444               | ŕ           | Tare     | 0.6398                                 | 115 1133        | 0.3400     | 7/15 1809        |          |                  | $\overline{\mathbf{A}}$ |
|                          | 30                 | 1.10 Cm     | Tech     |                                        | 00              |            | DO               |          | h                | -*                      |
| Filter ID                | M.SC               | 1nols       | Final    | 0.3399                                 |                 | 0.3403     | 8/31 11:41       |          | <u>├</u> ───┤    | den's                   |
| 0                        | 31                 |             | Tech     |                                        | 512214          |            |                  |          |                  | <u> </u>                |
| 3338                     |                    |             | Notes    |                                        | (               | 1          | TG               |          |                  |                         |
| Run No.                  | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
|                          | 1                  |             | Tare     | 0.3413                                 |                 |            | 715 1810         |          |                  |                         |
| 2                        | 3644               | B.          | Tech     |                                        | , Dí)           | <u> </u>   | <u>Signation</u> |          | ├────┼           |                         |
| Filter ID                | will               | K H         |          | 0,3415                                 | 833 14:13       | 3-24-24    | 2131 11:52       | 2418     | at mai           |                         |
|                          | A CC               | Pro 1       | Tech     | C11.011.1                              | 0.00            | 0 5909     |                  | y K 0    | 9/2/0:03         | -                       |
| 2239                     | 011                | -           | · Notes  | · · · · · · · ·                        |                 | . [        | TG               |          |                  |                         |
| Run No.                  | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
|                          |                    | - providing | Tare     | 0.3394                                 |                 |            | 115 1817         | weight   | Date / Time      | Good                    |
| 3                        | 2644               | 1           | Tech     | -1221 <b>4</b>                         |                 | 121714     |                  |          | ┢─────┟          | <u> </u>                |
| Filter ID                | 1 U                | 2.          | Final    | - 79bc                                 | Clarint 1       | A 2014     | DD               |          | <u> </u>         |                         |
|                          | W. CF              | Dib         |          | 0.3345                                 | 8/30/14:14      | 0.3311     | 8/31 11:30       |          | <b>├───</b>      | 1                       |
| 2230                     | " (CE)             | Nº 1        | Tech     |                                        |                 |            | 16               |          |                  |                         |
|                          |                    |             | Notes    | ······ · · · · · · · · · · · · · · · · |                 |            |                  |          |                  | Good                    |
|                          | Proj. No./Location | Appearance  |          | Weight                                 | Date / Time     | Weight     | Date / Time      | Weight   | Date / Time      | Good                    |
| 6                        | 3031               | NA          | Tare     | 0.3431                                 |                 | 0.3430     | 415 18160        | 1913     | \$ 17.20         |                         |
|                          | 2 <sup>×</sup>     | Mach        | Tech     | 1/2                                    | 100             |            | <u></u><br>(C)   |          | 1                |                         |
|                          |                    | 12          | Final    | 03490                                  | 921005          | 0.3491     | 8,89.50          |          | - E              | 4                       |
| Filter ID                |                    |             |          |                                        |                 |            |                  |          |                  |                         |
| Filter ID                |                    | [           | Tech     |                                        | Filter Grav     |            | MA               |          |                  |                         |

#### AIRTECH ENVIRONMENTAL SERVICES INC.

Beaker Gravimetric Data Sheet

PROJECT NO. 36480

| Page | 1 | of |  |
|------|---|----|--|
| 1.1  |   |    |  |

| Client | pro K   | . / / | Date Received | 10/1/11 |  |
|--------|---------|-------|---------------|---------|--|
| Plant  | Willson | Stal  |               |         |  |

| Run No.   | Location/Volume                    | Method/ Re    | agent         | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
|-----------|------------------------------------|---------------|---------------|-----------------|-------------|----------|--------------------------|-----------|----------------|----------|
|           | Stuch                              |               | Tare          | 101.6381        | 9/23 10:53  | 101.6574 | 9/20 9:22                |           |                | 2        |
| ļ         |                                    | 702           | Tech          |                 |             |          | AZ                       |           |                |          |
| Beaker II | 2001-200+<br>100-50                |               | Final         | 101.1444        | 0/1/210     | 101.0444 | 10/10 64                 |           |                | L        |
| 1416      |                                    | PI            | Tech          | L               | KE          |          |                          |           |                |          |
|           | <u> ううてinis</u><br>Location/Volume | Method/ Rea   | Notes         |                 |             |          |                          |           |                |          |
| Run No.   |                                    | Method/ Kea   | Tare          | Weight 8/. 7743 | Date / Time | Weight   | Date / Time<br>9/26 9/22 | Weight    | Date / Time    | Good     |
| 12        | Stuch                              | ZOZ           | Tech          | 01.6197         | 4/23 10:54  | 81.2739  |                          |           |                | 4        |
| Beaker ID | -                                  |               | Final         | 81.2794         | NH 12:12    | 81. 2798 | AI<br>10/106:27          |           |                | <u> </u> |
|           | 100 + 000 170                      | DI            | Tech          | 0.1.6117        | KZ          | P (10)   | 10/100.01                |           | <u> </u>       | 14       |
| 106       | 450 mls                            |               | Notes         |                 | <u> </u>    |          | L/                       |           | <u> </u>       | <u> </u> |
| Run No.   | Location/Volume                    | Method/ Rea   | gent          | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
| 3         | Stach                              | -             | Tare          | 83 3557         | 9/23 10:54  | 833555   | 9/26 4122                |           |                | -        |
| $\square$ |                                    | Zoz           | Tech          | A               |             |          | AT                       |           |                |          |
| Beaker ID | 200+250+50                         |               | Final         | 3 <u>3</u> 3622 | 10/7/2:11   | 63.3617  | 10/10 6:27               |           |                | V        |
| 304       | 490 mis                            | DI            | Tech          |                 | KZ          |          | <i>c</i> .               |           |                |          |
|           |                                    |               | Notes         | 141-1 1         |             |          | /                        |           |                |          |
| Run No.   |                                    | Method/ Rea   |               | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
| 176       | Stack                              | 202           | Tare<br>Tech  | 81.6597         | 9/23 10:55  | 81,6596  | 4/26 9.23                |           |                | ~        |
| Beaker ID | 1                                  | 222           | Final         | 8.68 K          | 10/772:14   | 81,6599  | 10/10 6:26               | GI I & DI | 1. 1. 10.12    | Z        |
|           |                                    |               | Tech          | 610             | KS          | 016211   | 10/10 6.20               | 51,6601   | 10/11 10:13    | 4        |
| 315       | ZZ5 mis                            | PL            | Notes         | 6670            | K2          |          | 1                        |           | K2             |          |
| Run No.   |                                    | Method/ Reag  |               | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
|           |                                    |               | Таге          |                 |             |          |                          |           | - Date / Thile | GOOD     |
|           |                                    |               | Tech          |                 |             |          |                          |           |                |          |
| Beaker ID |                                    |               | Final         |                 |             |          |                          |           |                |          |
|           |                                    |               | Tech          |                 |             |          |                          |           |                |          |
|           | mls                                |               | Notes         |                 |             |          |                          | ···       |                |          |
| Run No.   | Location/Volume                    | Method/ Reag  |               | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
|           |                                    |               | Tare          |                 |             |          |                          |           |                |          |
| Beaker ID |                                    |               | Tech<br>Final |                 |             |          |                          |           |                |          |
| Deakerin  |                                    |               |               |                 |             |          |                          |           |                |          |
|           | mis                                | ł             | Tech<br>Notes |                 |             |          |                          |           |                |          |
| Run No.   |                                    | Method/ Reag  |               | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
|           |                                    |               | Tare          |                 |             |          |                          |           |                | 0000     |
|           |                                    | · •           | Tech          |                 |             |          |                          |           |                |          |
| Beaker ID | 1                                  | Ţ             | Final         |                 |             |          |                          |           |                |          |
|           | l                                  | Ī             | Tech          |                 |             |          |                          |           |                |          |
|           | mis                                | <u> </u>      | Notes         |                 |             |          |                          |           |                |          |
| Run No.   | Location/Volume                    | Aethod/ Reage |               | Weight          | Date / Time | Weight   | Date / Time              | Weight    | Date / Time    | Good     |
|           |                                    | Ļ             | Tare          |                 |             |          |                          |           |                |          |
|           |                                    | Ļ             | Tech          |                 |             |          |                          |           |                |          |
| Beaker ID |                                    | Ļ             | Final         |                 |             |          |                          |           |                |          |
|           |                                    | Ļ             | Tech          |                 |             |          |                          |           |                |          |
|           | mis                                |               | Notes         |                 | ···         |          |                          |           |                |          |

#### AIRTECH ENVIRONMENTAL SERVICES INC.

Beaker Gravimetric Data Sheet

PROJECT NO. 36483

Page Z of

|                                                                                                          |                 |                                     |                                                                                                                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                | 4                                                                                                                                                                                                                                                                         |                            |                                       |                             |
|----------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------|
| Client                                                                                                   | 13ig Ri         | Ver 5                               | Date R                                                                                                                                             | eceived /                                                                           | 0/1/11                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Plant                                                                                                    | _ willson       | <u> </u>                            |                                                                                                                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Run No.                                                                                                  | Location/Volume | Method/ Rea                         | agent                                                                                                                                              | Weight                                                                              | Date / Time                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | Weight                     | Date / Time                           | Good                        |
| 8                                                                                                        | 111             |                                     | Tare                                                                                                                                               | 3,58 33                                                                             | 9/16 352                                                                                                                                                                                                                                                                                                                                                             | 3. 3831                                                                          | 9/21 6.54                                                                                                                                                                                                                                                                 |                            |                                       | 1                           |
|                                                                                                          | Stuck           | 202                                 | Tech                                                                                                                                               |                                                                                     | AI                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Beaker ID                                                                                                | 200+30          | J.                                  | Final                                                                                                                                              | 3.5850                                                                              | 10/7 1154                                                                                                                                                                                                                                                                                                                                                            | 3.5864                                                                           | 10/10 6:44                                                                                                                                                                                                                                                                | 3.5861                     | 10/11 19915                           |                             |
| 313                                                                                                      |                 | Her                                 | Tech                                                                                                                                               |                                                                                     | KE                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | 1                                                                                                                                                                                                                                                                         |                            | KE                                    |                             |
| HI                                                                                                       | 230 mls         |                                     | Notes                                                                                                                                              |                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                    | - <b>-</b>                                                                       |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Run No.                                                                                                  | Location/Volume | Method/ Rea                         | igent                                                                                                                                              | Weight                                                                              | Date / Time                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | Weight                     | Date / Time                           | Good                        |
| 2                                                                                                        |                 |                                     | Tare                                                                                                                                               | 3.5805                                                                              | 12/16 1352                                                                                                                                                                                                                                                                                                                                                           | 3.5805                                                                           | 9/216:53                                                                                                                                                                                                                                                                  |                            |                                       | ~                           |
| <u> </u>                                                                                                 |                 | 202                                 | Tech                                                                                                                                               |                                                                                     | AI                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Beaker ID                                                                                                | 200+45          | 1 1                                 | Final                                                                                                                                              | 3,5648                                                                              | 10/7 1157                                                                                                                                                                                                                                                                                                                                                            | 3.57.56                                                                          | 10/106:44                                                                                                                                                                                                                                                                 | 3.5851                     | 10/11 0919                            | $\checkmark$                |
| HZ                                                                                                       | 2.45 mis        | Her                                 | Tech                                                                                                                                               |                                                                                     | KE                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | 1                                                                                                                                                                                                                                                                         |                            | KE                                    |                             |
|                                                                                                          |                 | ļ. ·                                | Notes                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                           |                            | · · ·                                 |                             |
| Run No.                                                                                                  | Location/Volume | Method/ Rea                         | T                                                                                                                                                  | Weight                                                                              | Date / Time                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | Weight                     | Date / Time                           | Good                        |
| 3                                                                                                        | 1               |                                     | Tare                                                                                                                                               | 3,5793                                                                              | 9/16 1353                                                                                                                                                                                                                                                                                                                                                            | 3.5791                                                                           | 9/21 6:52                                                                                                                                                                                                                                                                 |                            | L                                     | ~                           |
| -                                                                                                        | 200+30          | 202                                 | Tech                                                                                                                                               | and the second                                                                      | 41                                                                                                                                                                                                                                                                                                                                                                   | 2 (17)                                                                           | 1 1-                                                                                                                                                                                                                                                                      |                            |                                       |                             |
| Beaker ID                                                                                                | -               | ifex                                | Final                                                                                                                                              | 3.5811                                                                              | 10/7 1152                                                                                                                                                                                                                                                                                                                                                            | 3.5826                                                                           | 10/10 6:45                                                                                                                                                                                                                                                                | <u>3,582</u>               | 10/11 0921                            | V                           |
| 43                                                                                                       | 232 mls         | liper                               | Tech                                                                                                                                               | ļ                                                                                   | KE                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                           |                            | KE                                    |                             |
|                                                                                                          |                 | Mathead/ Dee                        | Notes                                                                                                                                              | Malaka                                                                              | Dete (There                                                                                                                                                                                                                                                                                                                                                          | and the s                                                                        |                                                                                                                                                                                                                                                                           |                            |                                       |                             |
| Run No.                                                                                                  | Location/Volume | Method/ Rea                         | T                                                                                                                                                  | Weight                                                                              | Date / Time                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | Weight                     | Date / Time                           | Good                        |
| FB                                                                                                       |                 | 202                                 | Tare<br>Tech                                                                                                                                       | 12.6046                                                                             | 916 1353<br>AJ                                                                                                                                                                                                                                                                                                                                                       | 3.6048                                                                           | 9/216:52                                                                                                                                                                                                                                                                  |                            |                                       | ~                           |
| Beaker ID                                                                                                | 12              | 1                                   | Final                                                                                                                                              | 2 1 0.111                                                                           |                                                                                                                                                                                                                                                                                                                                                                      | 3.6048                                                                           | 10/106:44                                                                                                                                                                                                                                                                 |                            |                                       |                             |
|                                                                                                          | -               | 1 tex                               |                                                                                                                                                    | 3.6046                                                                              |                                                                                                                                                                                                                                                                                                                                                                      | 3.00 70                                                                          | 10/100.14                                                                                                                                                                                                                                                                 |                            | · · · · · · · · · · · · · · · · · · · | ~                           |
| 14                                                                                                       | 210 mls         |                                     | Tech                                                                                                                                               |                                                                                     | KE                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                           |                            | l                                     |                             |
| Run No.                                                                                                  | Location/Volume | Method/ Rea                         | Notes                                                                                                                                              | Weight                                                                              | Date / Time                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | Weight                     | Data / Time                           | Good                        |
| A                                                                                                        |                 |                                     | Tare                                                                                                                                               | 3.5578                                                                              | 9/16 1355                                                                                                                                                                                                                                                                                                                                                            | 3.55 88                                                                          | 9/21 6:51                                                                                                                                                                                                                                                                 | 3.5587                     | Date / Time<br>9/54 7:59              | Good                        |
| -B                                                                                                       |                 | 5                                   | Tech                                                                                                                                               | 5.0010                                                                              | AF                                                                                                                                                                                                                                                                                                                                                                   | 1.3700                                                                           | 4/21 0.01                                                                                                                                                                                                                                                                 | 2:229                      | LA FA                                 |                             |
|                                                                                                          |                 |                                     |                                                                                                                                                    |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                           |                            | · · · ·                               | / / N                       |
| Beaker ID                                                                                                |                 |                                     |                                                                                                                                                    | 36581                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | 2.5591.                                                                          | Inlin Lillie                                                                                                                                                                                                                                                              | 25507                      | the man                               |                             |
|                                                                                                          |                 | 1 Aco                               | Final                                                                                                                                              | 35581                                                                               | 10/7 1156                                                                                                                                                                                                                                                                                                                                                            | 3.5596                                                                           | 10/106:44                                                                                                                                                                                                                                                                 | 3.5587                     | 10/11 0929                            |                             |
| Beaker ID<br>H 5                                                                                         | ZOD mis         | Are                                 | Final<br>Tech                                                                                                                                      | 35581                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | 3.5596                                                                           | 10/106:44                                                                                                                                                                                                                                                                 | 3.5587                     | 10/11 0929<br>KE                      |                             |
|                                                                                                          | ZOU mis         | Act<br>Method/ Reag                 | Final<br>Tech<br>Notes                                                                                                                             | 3558)<br>Weight                                                                     | 10/7 1156                                                                                                                                                                                                                                                                                                                                                            |                                                                                  | 10/10 6:44                                                                                                                                                                                                                                                                |                            | KE                                    |                             |
| H5                                                                                                       |                 |                                     | Final<br>Tech<br>Notes                                                                                                                             | Weight                                                                              | 10/7 1156<br>KE<br>Date / Time                                                                                                                                                                                                                                                                                                                                       | Weight                                                                           | Date / Time                                                                                                                                                                                                                                                               | 3.5587<br>Weight           |                                       |                             |
| H5                                                                                                       |                 | _                                   | Final<br>Tech<br>Notes                                                                                                                             | Weight<br>3,5970                                                                    | 10/7 1156<br>KE<br>Date / Time<br>9/16 1355<br>.47                                                                                                                                                                                                                                                                                                                   | Weight<br>3, 5978                                                                | Date / Time<br>9/21 651                                                                                                                                                                                                                                                   |                            | KE                                    | Good                        |
| H5                                                                                                       |                 | _                                   | Final<br>Tech<br>Notes<br>sent<br>Tare                                                                                                             | Weight<br>3,5970                                                                    | 10/7 1156<br>KE<br>Date / Time<br>9/16 1355<br>.47                                                                                                                                                                                                                                                                                                                   | Weight<br>3, 5978                                                                | Date / Time<br>9/21 651                                                                                                                                                                                                                                                   |                            | KE                                    | Good                        |
| H 5<br>Run No.<br>/<br>Beaker ID                                                                         | Location/Volume | Act<br>Method/ Read                 | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech                                                                                                     | Weight<br>3,5970                                                                    | 10/7 1156<br>KE<br>Date / Time<br>9/16 1355<br>.42<br>10/7 1148                                                                                                                                                                                                                                                                                                      | Weight<br>3, 5978                                                                | Date / Time<br>9/21 651                                                                                                                                                                                                                                                   |                            | KE                                    | Good                        |
| H 5<br>Run No.                                                                                           |                 | _                                   | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final                                                                                            | Weight<br>3,5970                                                                    | 10/7 1156<br>KE<br>Date / Time<br>9/16 1355<br>.47                                                                                                                                                                                                                                                                                                                   | Weight<br>3, 5978                                                                | Date / Time<br>9/21 651                                                                                                                                                                                                                                                   |                            | KE                                    | Good                        |
| H 5<br>Run No.<br>/<br>Beaker ID                                                                         | Location/Volume | _                                   | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>gent                                                                   | Weight<br>3,5970<br>3.6226<br>Weight                                                | Ю/7 1156<br>КЕ<br>Date / Time<br>9/16 1355<br>47<br>Ю/7 1148<br>КЕ<br>Date / Time                                                                                                                                                                                                                                                                                    | Weight<br>3, 5978                                                                | Date / Time<br>9/21 651                                                                                                                                                                                                                                                   |                            | KE                                    | Good                        |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.                                                       | Location/Volume | 5<br>Act                            | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>gent                                                                   | Weight<br>3,5970<br>3.6226<br>Weight                                                | Ю/7 1156<br>КЕ<br>Эле / Time<br>9/16 1355<br>.42<br>Ю/7 1148<br>КЕ<br>Date / Time<br>9/14 1356                                                                                                                                                                                                                                                                       | Weight<br>3, 5978<br>3.6 22.2                                                    | Date / Time<br>9/21 (351<br>3<br>10/10 (1:4/6                                                                                                                                                                                                                             | Weight                     | Date / Time                           | Good                        |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6                                                                  | Location/Volume | 5<br>Act                            | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>gent                                                                   | Weight<br>3,5970<br>3.6226<br>Weight                                                | Ю/7 1156<br>К.Е.<br>9/16 1355<br>.4.2<br>Ю/7 1148<br>К.Е.<br>Date / Time<br>9/16 1356<br>.4.1                                                                                                                                                                                                                                                                        | Weight<br>3, 5978<br>3.6 22.2<br>Weight<br>3.5 795                               | $\frac{1}{\frac{1}{2}}$ Date / Time $\frac{9/21}{55}$ $\frac{1}{\frac{5}{10}}$ $\frac{1}{10}$ Date / Time $\frac{9}{21}$                                                                                                                                                  | Weight                     | Date / Time                           | Good<br>Good<br>Good        |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.                                                       | Location/Volume | 5<br>Act                            | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>gent<br>Tare                                                           | Weight<br>3,5970<br>3.6226<br>Weight                                                | Ю/7 1156<br>К.Е.<br>9/16 1355<br>.4.2<br>Ю/7 1148<br>К.Е.<br>Date / Time<br>9/16 1356<br>.4.1                                                                                                                                                                                                                                                                        | Weight<br>3, 5778<br>3.6 22.2.<br>Weight                                         | Date / Time<br>9/2/ 4/5/<br>5<br>10/10 4/4/4<br>7<br>Date / Time                                                                                                                                                                                                          | Weight                     | Date / Time                           | Good<br>Good<br>Good        |
| H 5<br>Run No.<br>/<br>Beaker ID<br>H 6<br>Run No.<br>Z<br>Beaker ID                                     | Location/Volume | 5<br>Act                            | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Notes<br>sent<br>Tare<br>Tare                                                           | Weight<br>3,5970<br>3 to 22Co<br>Weight<br>3,5790                                   | ю/7 1156<br>К.Е.<br>Паte / Time<br>11/6 1355<br>.4.1<br>Ю/7 1148<br>К.Е.<br>Date / Time<br>9//6 1356<br>.4.1                                                                                                                                                                                                                                                         | Weight<br>3, 5978<br>3.6 22.2<br>Weight<br>3.5 795                               | $\frac{1}{\frac{1}{2}}$ Date / Time $\frac{9/21}{55}$ $\frac{1}{\frac{5}{10}}$ $\frac{1}{10}$ Date / Time $\frac{9}{21}$                                                                                                                                                  | Weight                     | Date / Time                           |                             |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.<br>2<br>Beaker ID<br>H 7                              | Location/Volume | S<br>Acr<br>Method/Reag<br>S<br>Acr | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Final<br>Tech<br>Notes                | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.6125</b>                     | Ю/7 1156<br>КЕ<br>9/16 1355<br>47<br>10/7 1148<br>КЕ<br>9/14 1356<br>AL<br>10/7 1149<br>КЕ                                                                                                                                                                                                                                                                           | Weight<br>3, 5778<br>3.6 22.2.<br>Weight<br>3.5 795<br>3.6180                    | $\frac{1}{9/21} \frac{1}{457}$ $\frac{3}{10/10} \frac{1}{44}$ $\frac{1}{7}$ Date / Time $\frac{9}{21} \frac{1}{4550}$ $\frac{1}{10/10} \frac{1}{447}$                                                                                                                     | Weight                     | Date / Time                           |                             |
| H 5<br>Run No.<br>/<br>Beaker ID<br>H 6<br>Run No.<br>Z<br>Beaker ID                                     | Location/Volume | 5<br>Act                            | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Final<br>Tech<br>Notes<br>gent                | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.66135</b>                    | ю/7 1156<br>К.Е.<br><sup>9</sup> /16 1355<br>.47<br><i>Ф/7 1148</i><br><i>К.Е.</i><br><i>Дате / Тіте</i><br><i>9</i> //4 1356<br><i>А.Г.</i><br><i>10/7 1149</i><br><i>К.Е.</i><br><i>Дате / Тіте</i><br><i>10/7 1149</i>                                                                                                                                            | Weight<br>3, 5778<br>3.6 22.2.<br>Weight<br>3.5 795<br>8.6180<br>Weight          | Date / Time         9/L1       Li51         5         10/10       L:4/L         7         Date / Time         9/2.1       L:550         10/10       L:4/T         1         Date / Time         9/2.1       L:570         10/10       L:4/T         1         Date / Time | Weight                     | Date / Time                           |                             |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.<br>2<br>Beaker ID<br>H 7<br>Run No.                   | Location/Volume | S<br>Acr<br>Method/Reag<br>S<br>Acr | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Tech<br>Final<br>Tech<br>Tare<br>Tech<br>Final<br>Tech<br>Notes<br>eent<br>Tare                          | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.66135</b>                    | ю/7 1156<br>К.Е.<br>Эле / Тіте<br>Эле / Тіте<br>Эле / Тіте<br>Эле / Тіте<br>Эле / Тіте<br>Бате / Тіте<br>Дате / Тіте<br>Ль 1356                                                                                                                                                                                                                                      | Weight<br>3, 5778<br>3.6 22.2.<br>Weight<br>3.5 795<br>3.6180                    | $\frac{1}{9/21} \frac{1}{457}$ $\frac{3}{10/10} \frac{1}{44}$ $\frac{1}{7}$ Date / Time $\frac{9}{21} \frac{1}{4550}$ $\frac{1}{10/10} \frac{1}{447}$                                                                                                                     | Weight                     | Date / Time                           | Good<br>C<br>Good<br>C<br>C |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.<br>2<br>Beaker ID<br>H 7<br>Run No.<br>3              | Location/Volume | S<br>Acr<br>Method/Reag<br>S<br>Acr | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Final<br>Tech<br>Notes<br>ent<br>Tare<br>Tare | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.6195</b><br>Weight<br>3,5530 | Ю/7         ИЗС           Date / Time         9//6         1355           .4.7         Ю/7         1/48           Ю/7         1/48         КЕ           Date / Time         9//6         1356           .4.1         1356         А.1           10/7         1/49         КЕ           Date / Time         1/6         1356           .4.2         .4.2         .4.2 | Weight<br>3, 5978<br>3.6 22.2<br>Weight<br>3.5 795<br>3.6180<br>Weight<br>3.5534 | / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                     | Weight<br>Weight<br>Weight | Date / Time                           | Good<br>Good<br>L<br>Good   |
| H 5<br>Run No.<br>J<br>Beaker ID<br>H 6<br>Run No.<br>Z<br>Beaker ID<br>H 7<br>Run No.<br>3<br>Beaker ID | Location/Volume | S<br>Acr<br>Method/Reag<br>S<br>Acr | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Final<br>Tech<br>Notes<br>ent<br>Tare<br>Tare | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.6195</b><br>Weight<br>3,5530 | ю/т 1156<br>КЕ<br>Date / Time<br>9/16 1355<br>47<br>10/7 1148<br>КЕ<br>Date / Time<br>9/16 1356<br>47<br>10/7 1149<br>КЕ<br>Date / Time<br>7/16 1356<br>47<br>10/7 1150                                                                                                                                                                                              | Weight<br>3, 5778<br>3.6 22.2.<br>Weight<br>3.5 795<br>8.6180<br>Weight          | Date / Time         9/L1       Li51         5         10/10       L:4/L         7         Date / Time         9/2.1       L:550         10/10       L:4/T         1         Date / Time         9/2.1       L:570         10/10       L:4/T         1         Date / Time | Weight                     | Date / Time                           | Good<br>Good<br>L<br>Good   |
| H 5<br>Run No.<br>1<br>Beaker ID<br>H 6<br>Run No.<br>2<br>Beaker ID<br>H 7<br>Run No.<br>3              | Location/Volume | S<br>Acr<br>Method/Reag<br>S<br>Acr | Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Notes<br>gent<br>Tare<br>Final<br>Tech<br>Final<br>Tech<br>Notes<br>ent<br>Tare<br>Tare | Weight<br>3,5970<br>3.6226<br>Weight<br>3,5790<br><b>3.6195</b><br>Weight<br>3,5530 | Ю/7         ИЗС           Date / Time         9//6         1355           .4.7         Ю/7         1/48           Ю/7         1/48         КЕ           Date / Time         9//6         1356           .4.1         1356         А.1           10/7         1/49         КЕ           Date / Time         1/6         1356           .4.2         .4.2         .4.2 | Weight<br>3, 5978<br>3.6 22.2<br>Weight<br>3.5 795<br>3.6180<br>Weight<br>3.5534 | / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                     | Weight<br>Weight<br>Weight | Date / Time                           | Good<br>Cood<br>C           |

Chain of Custody

## **Includes the following:**

• Sample Chain of Custody



#### 1808 ď Notes Ž していいろう Page Analysis Requested Laboratory Date/Time Address Contact Carrier Phone Fax 792 5 ÷ **D** E) z ک Catch + . IN H, SCU, Selution 3 ŝиЛ 02 7 5 7 9-20-11 Sample Description いちょく MH SOL **Relinquished By** Accepted By 1 (signature) Date/Time (signature) Date/Time (printed) (printed) Completed By 200 WL Location 1-mo Ĵ Date 23 11 2 くこく 2 Je J J 9/30 1.1 N M Juliens tora 00 30 130 36 9/30 Bid Rivers Date M. cheer Blank 3045 <u>ار</u> ف Run No. 3 MM N Relinquished By **Project Number** Kunt A Runt B RUM 2 RUM 34 RUM 38 Blank Accepted By Comments: ID No. Rust (signature) Date/Time (signature) Date/Time (printed) (printed) Client Plant

Airtech Environmental Services Inc. 601A Country Club Drive Bensenville, II, 80106 Phone: (630) 860-4740, Fax: (630) 860 4745

AIRTECH Environmental Services Inc.

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

| IRTECH ENVIRONMENTAL SERVICES INC.<br>Chain of Custody |
|--------------------------------------------------------|
|--------------------------------------------------------|

| TOOL   | N                                              |                            | <u>A</u>                                                                                            |
|--------|------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------|
| Ŀ      | õ                                              | \$93                       |                                                                                                     |
| N<br>Z | 2                                              | Notes                      | Le L<br>aberer                                                                                      |
|        | ප<br>ති<br>ස<br>ද                              |                            | No. 1                                                                                               |
|        | Analysis Requested                             |                            | Carrier<br>Carrier<br>Laboratory<br>Contact<br>Contact<br>Phone<br>Fax                              |
|        | Stick<br>9-30-11<br>W MH                       | Sample Description         | Befinquished By<br>(signature)<br>(printed)<br>Data/Time<br>Accepted By<br>(signature)<br>(printed) |
|        | Date<br>Date<br>Completed By                   | Heretowe<br>Uzene<br>Uzene |                                                                                                     |
| :      | 369 E.V.e.L<br>Big E.V.e.L<br>Distribute L     | Date Date                  | Mithuel He                                                                                          |
|        |                                                | Run No.                    |                                                                                                     |
|        | Project Number<br>Client<br>Plant<br>Comments: | No.<br>Blenk<br>Blonk      | Refinquished By<br>(signature)<br>(printed)<br>Date/Time<br>Accepted By<br>(signature)<br>(printed) |



Airtech Environmental Services Inc. 601A Country Club Drive Bensenville, IL 60106 Phone: (630) 860-4740, Fax: (630) 850 4745

0

| Project Number  | 2648          | Location       | Strala             | Analysi        | Analysis Recitested | Parte C of m     |
|-----------------|---------------|----------------|--------------------|----------------|---------------------|------------------|
| Client          | Rie Philory   | Date           | 0.20-11            |                |                     |                  |
| Plant           | Divenshore. K | Completed By   | m4                 |                |                     |                  |
| Comments:       |               |                |                    |                |                     |                  |
|                 |               |                |                    | 5              |                     |                  |
| :               |               |                |                    | ` W<br>2. 4    |                     | :                |
| ID No.          |               |                | Sample Description | 1              |                     | Notes            |
| Har (           | 1 9/30        | I'mp neer 1    | atch + the Kinne   | ×              |                     |                  |
| Run Z           | 2             |                | 1                  | ×              |                     |                  |
| Puin 3          | ~             | 21             | 14                 | X              |                     |                  |
| Rent            |               | Acetone + Hexe | xave River         | X              |                     |                  |
| Renz            | 2             | 11             | 11                 | X              |                     |                  |
| Reinz           | 3             | 66             | 13                 | ×              |                     |                  |
| Prin 1          | )             | F 1/2 Ace      | toke Phinch        | ×              |                     | -                |
| Bun Z           | ス             | ر د            | 11                 |                |                     |                  |
| Run 3           | 0             | ζ κ            | 1                  | ×              |                     |                  |
| Bun /           |               | EPM FIL        |                    | γ              |                     |                  |
| CNWN 2          | 2             | 20             |                    | ×              |                     |                  |
| Kun 3           | M             |                |                    |                |                     |                  |
| 12225 1244      |               | NURTHOOD S     | Fiber RIFE         | ×              |                     |                  |
| 12222           | 2             |                | 1                  | . <del>,</del> |                     |                  |
| 12224           | M             | 3              | 1.                 | Y              |                     |                  |
| Relinquished By |               | Relinc         | Relinquished By    | <u> </u>       | Carrier             | - Relect         |
| (signature)     | ALC A         | (signature)    | ture)              |                | Laboratory          | Bronsment 110 La |
| (printed)       | sol: cheel    | Ker (printed)  | (p                 | ŭ              | Contact             |                  |
| Date/Time       | 10-1-11       | / Date/Time    | lime               | Ac             | Address             |                  |
| Accepted By     | 01            | Accepted       | oted By            |                |                     |                  |
| (signature)     | 7             | (signature)    | ture)              | TT.            | Phone               |                  |
| (printed)       | 10-3-11       | J. we have     | (p;                | Fax            | ×                   |                  |
|                 |               |                | -                  |                |                     |                  |

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

# Airtech Environmental Services Inc. 601A Country Club Drive Bensenville, IL 60106 Phone: (630) 860-4740, Fax: (530) 860 4745



Calibration Data

- Daily Analytical Balance Calibration Log
- Yearly Analytical Balance Test and Calibration Certificate



#### AIRTECH ENVIRONMENTAL SERVICES INC. Analytical Balance Daily Calibration

| Scale ID     |                  | Ohaus AV   | 114C    | Ì        |                                    |                             |                                   |                                       |
|--------------|------------------|------------|---------|----------|------------------------------------|-----------------------------|-----------------------------------|---------------------------------------|
| Units of Mea | sure             | grams      |         | ]        |                                    | Full Cal Test               | t Date                            | 4/13/10                               |
| Date         | Tech<br>Initials | 100.0000g  | 0.1000g | 5.0000g  | Barometric<br>Pressure<br>(in. Hg) | Relative<br>Humidity<br>(%) | Ambient<br>Temp ( <sup>0</sup> F) | Notes                                 |
| 4/29/11      | -16              |            | 5.0000  |          |                                    | 46                          | 68                                | 6,0999                                |
| 9/30/11      | 11               | 100.000    | 4.99-11 | 4.4999   |                                    | 47                          | 72                                | 0.0999                                |
| 10/4/11      | 76               | 100.0000   | 0,1000  | <u> </u> | 29.6                               | 47                          | 70                                |                                       |
| 10/4/11      | Ku               | 100, Dec . | 0.1000  | 5.0000   | 29.56                              | 48                          | 72                                |                                       |
| 10/1/1.      | Ku               | iocars 1   | 0.1001  | 5,0000   | 29.61                              | 50                          | 72                                |                                       |
| 10/10/11     | 16               | 100.0001   | 0.0999  | 49999    | 29.6                               | 43                          | っつ                                |                                       |
| 10/n/n       | KE               | 99,9999    | 0.0999  | 5.0000   | 29.49                              | 46                          | 70                                |                                       |
| 10/12/11     | FC.              | 160.0001   | 0.1000  | 5.0000   | 29.3                               | 47                          | 70                                |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              | ·                |            |         |          |                                    | L                           |                                   |                                       |
|              |                  |            |         |          |                                    | l                           |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   | <u> </u>                              |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   | · · · · · · · · · · · · · · · · · · · |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             | _                                 |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             | <b> </b>                          |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |
|              |                  |            |         |          |                                    |                             |                                   |                                       |

#### AIRTECH ENVIRONMENTAL SERVICES INC. Analytical Balance Daily Calibration

| Scale ID         | Ohaus AV114C |
|------------------|--------------|
| Units of Measure | grams        |

Full Cal Test Date

4/13/10

|                                           |                                                                                                                | Tech<br>Initials   |             |          |         | Barometric<br>Pressure | Relative<br>Humidity | Ambient                |         |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------|---------|------------------------|----------------------|------------------------|---------|
|                                           | Date                                                                                                           |                    | 100.0000g   | 0.1000g  | 5.0000g | (in. Hg)               | (%)                  | Temp ( <sup>0</sup> F) | Notes   |
|                                           | 7/20/11                                                                                                        | <u>M 14</u>        | 100.0001    | 0.1000   | 5.0000  | 29.27                  | 71                   | 65                     |         |
|                                           | +/27/11                                                                                                        | MH                 | 100.0000    | 01001    | 5,0001  | 29.31                  | 20                   | 6.6                    |         |
|                                           | <u>7/28/11</u>                                                                                                 | m1+                | 100.0000    | 0.1000   | 5.0001  | 29.34                  | 70                   | 64                     |         |
|                                           | 7/19/11                                                                                                        | MH                 | 100,0000    | 0.1001   | 5.0000  | 24-11                  | 64                   | 65                     |         |
| 4                                         | stilij_                                                                                                        | MH                 |             | d. (000  | 5.0000  | 29.58                  | 70                   | EC                     |         |
| 4                                         | 12/11                                                                                                          | MH                 | 100 0000    | 0.1000   | 5.0000  | 29.34                  | 70                   | 60                     |         |
| i i                                       | (3/11                                                                                                          | 10                 |             | 0.1001   | 4.9919  | 29.4                   | 61                   | 68                     |         |
| 8                                         | 14/11                                                                                                          | 16                 | 99.9999     | 0.0119   | 5.0000  | 29.5                   | 40                   | 68                     |         |
|                                           | 8/5/11                                                                                                         | 70                 | 100.0000    | 0.1000   | 5.0000  | 29.4                   | 46                   | 68                     |         |
| Le la | 1 11                                                                                                           | MH                 | 100. 0000   | 0/0000   | 5:0001  | 29.28                  | 60                   | 70                     |         |
| 8                                         | 14/11                                                                                                          | 19                 |             | 0.1000   | 5.0001  | 29.1                   | 50                   | 68                     |         |
| μ                                         | <u>////h</u>                                                                                                   | NC                 | 19.6199     | 8.4.00   | 4.559   | 29.4                   | 50                   | 74                     |         |
| 4                                         |                                                                                                                | мH                 | 4.000       |          |         | 79.44                  | 50                   | 74                     |         |
| 8                                         |                                                                                                                | 76                 |             | 6,100    | 5.000/  | 29.4                   | 46                   | 70                     |         |
|                                           | <u>3 In III</u>                                                                                                | CB                 | 99,9999     |          | 5,0001  | 29.3                   | 55                   | 72                     |         |
| 3                                         | (22/11                                                                                                         |                    |             | 0.1000   | 5.0000  | 29.4                   | 51                   | 72                     |         |
| 4                                         | 6/23/11                                                                                                        |                    |             | 0.0999   | 5.0001  | 29.4                   | 44                   | 68                     |         |
|                                           | 124/11                                                                                                         |                    | 100 000/ (  |          | 5.000   | 29.1                   | 52                   | 70                     |         |
|                                           | the second s | 6                  | 100,000     |          | 419999  | 29.4                   | 5                    | 72                     |         |
|                                           | 8126111                                                                                                        |                    | 100.000 C   |          | 5,0001  | 21.4                   | 50                   | 70                     |         |
|                                           | 5/27/11                                                                                                        |                    | 100.0000    |          | 4.9990  | Z9.4'                  | 5-3                  | 70                     |         |
| 5                                         | 128/11                                                                                                         | - <del>/ ``+</del> |             | 0.1001   | 5.0000  | 24.3                   | 46                   | 108                    |         |
| 9                                         | 129/11                                                                                                         | P 1                | 104001      |          | 5.0001  | 29.3                   | 44                   | 707                    |         |
| 1                                         | 131/11                                                                                                         |                    | ICH, GETTER |          | 5.0001  | 24.2                   | 41                   | 68                     |         |
| - 2                                       | Li                                                                                                             | 1                  | 100.00000   |          | 49999   | 29.4                   | 48                   | 72                     |         |
| ŢĮ                                        |                                                                                                                |                    | 00.0000     |          | 5.0000  | 29.4                   | 48                   | 70                     |         |
| 2                                         | 12/11                                                                                                          |                    | 00.0000 0   |          | 5.0001  | 79.3                   | 48                   | 68                     |         |
|                                           | 16/1                                                                                                           | 16                 | 100.0000 1  | 0.1000   | 5.0000  | 29.5                   | 46                   | 72                     |         |
| ×.                                        | 18/11                                                                                                          | MH V               | 00. 000 v   | 0.9969   | 5,0000  | 29.51                  | 45                   | 72                     |         |
| 101                                       | 12/11                                                                                                          | wit                | 00.0000 1   |          | 5.0001  | 29.30                  | 65                   | 70                     |         |
| 13/11 8                                   | 41711                                                                                                          |                    | 00.00000    | 3. 1001  | 5.0001  | 29.2                   | 47                   | 70                     |         |
| 9                                         | 114/1                                                                                                          |                    |             |          | 9.0001  | 291                    | 44                   | 1 Maria                |         |
| 91                                        |                                                                                                                |                    |             | .0999    | 5,0000  | 29.7                   | 45                   | 71                     | · · · · |
| 9                                         |                                                                                                                |                    | 99.9999     |          | 5.000   | 29.7                   | 42                   | 68                     |         |
|                                           |                                                                                                                |                    |             |          | 5.0001  | 29.4                   | 45                   | 68                     |         |
| 2                                         |                                                                                                                |                    |             |          | 4.9999  | 29.3                   | 46                   | 68<br>68<br>68         |         |
|                                           |                                                                                                                |                    |             |          | 5.0002  | 29.5                   | 50 47                | 68<br>68               |         |
|                                           | -                                                                                                              | 70 9               | 19.9999     | 0.1101   | 5.0001  | 29.5                   |                      | 68                     |         |
|                                           | 26/11                                                                                                          | R I                | 20.0000     | 1 (200 0 | 1-9999  | 29.0                   | 51                   | 71                     |         |
| 9/                                        | 11/85                                                                                                          | 16 9               | 9.9992 0    | 2.0948   | 4.999   | 24,2                   | 50                   | 10-7                   |         |

| Page 1 of 1 Page                                                        | ERTIFICATE LABAccredited: Centificate #L1053-1<br>Standards Used: Traceable through NIST to the SI units<br>Test equipment and weight (s) certificates available on request |                                        | Yes I No No                     |             | NIST Handbook 44                        | Indicator | ~                   |             |                  | 4               | Tracashia                | Tach Car #/ Wh In ] | ╁┷                                                                                                              | R # 15 38014                                                                    |            | ••• 5     | 2 46 | 2 👟 🖻 | • =   | 2 * 4 | € 46                                                                                        | Q .   | Q            | 2 | * 9      |           | mede, procedure colltand, professional aspendence, and the unsaminary suspectand with this collimition. It is the responsibility of the user of this equipment to determine if the reades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------|-----------------------------------------|-----------|---------------------|-------------|------------------|-----------------|--------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|-----------|------|-------|-------|-------|---------------------------------------------------------------------------------------------|-------|--------------|---|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | <u>Accredite</u><br>gh NIST t                                                                                                                                               | Procedure used: 5.4-02 Process Control | (MN)                            | No I 1      | 1 I I I I I I I I I I I I I I I I I I I |           |                     | Zee Z       | <u> </u>         |                 | Temn                     |                     | Ļ                                                                                                               |                                                                                 |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | af the user of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                         | LA-I<br>LA-I<br>certifi                                                                                                                                                     | 02 Proc                                | rement                          |             | refer                                   |           | -                   |             |                  | m               |                          | M                   | 1                                                                                                               | 2                                                                               | <b> </b>   |           |      |       |       |       |                                                                                             |       |              |   |          |           | <b>responsibility</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                         | aceable<br>eight (s                                                                                                                                                         | 1: 5.4-6                               | measui                          | Yes D       | ologica                                 |           | Ε.                  |             | E                | est             | Pase/Fai                 |                     | 10                                                                                                              | d<br>Q                                                                          |            |           | -    | -     |       |       | -                                                                                           |       | $\downarrow$ |   |          |           | stion. It is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                         | A T E<br>lsed: Tr<br>and w                                                                                                                                                  | ire used                               | inty of                         | ature       | ed metr                                 |           | Scale Platform      | CUINEL JEST | Parallelogram    | Side/Front Test | ų                        | AMT 1               | 20.02                                                                                                           | 50.00                                                                           |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | oth this called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                         | T I F I C<br>tandards U<br>equipment                                                                                                                                        | Procedu                                | Uncertainty of measurement (UM) | Temperature | Identified metrological                 |           |                     | 3           | L<br>Para        | Side/           | As Left                  | AMT 2               | 50.0000 100.000 100.000 100.000                                                                                 | 50.0000 (00.0001 100.0000 50.0000                                               |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | Contribution Association of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6650                                                                    | ┙凵                                                                                                                                                                          | Dep                                    |                                 |             |                                         |           | Capacity X Grad.    |             |                  |                 | pui                      | AMT 2               | 100.00M                                                                                                         | 1000.001                                                                        |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | perferrer, and the un-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATION<br>800/498-6650                                                   | ATION<br>ons will<br>c.)                                                                                                                                                    | and / or                               |                                 |             |                                         |           | Capact              | 2           | N/               |                 | As Found                 | AMT 1               | 0.0000                                                                                                          | 0.0000                                                                          |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | and, professional and<br>level of supervisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>SRPORA</b><br>60101 8                                                | L I B R A<br>condition<br>e, and etc.                                                                                                                                       | (Plant                                 | 96                              | T-          | lim /                                   |           | ial #<br>210 C/_    |             | Equipment ID:    |                 |                          | Zero                | 3                                                                                                               | 00                                                                              | ***        |           |      |       |       |       |                                                                                             |       |              |   |          |           | ie, precedure adili-<br>nd at a confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LE COF                                                                  | & CAL<br>ironmental o<br>emperature,                                                                                                                                        | Location (Plant and                    | 4                               | V           | Contact: (                              |           | Serial<br>202021    |             | Equip            |                 | est                      | 5                   |                                                                                                                 | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8 |            | ****      |      |       |       |       |                                                                                             |       |              |   |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D SCA                                                                   | TEST &                                                                                                                                                                      |                                        |                                 | 9           | <u>ິ</u>                                |           | 18                  |             |                  |                 | As Found/Left Shift Test | J                   |                                                                                                                 | 00000                                                                           |            |           |      |       |       |       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |       |              |   |          |           | asied on data from<br>uncertainty (as ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AUTOMATED SCALE CORPORATION<br>202 W. Fay Ave. Addison, IL 60101 800/49 | TEST & CALIBRATI<br>Tests and/or calibrations shall stop when environmental conditions will<br>jeopardize the results. (rain, wind, vibration, temperature, and etc.)       |                                        |                                 | itridu      |                                         |           | Model #             | 4.          | 5 day            |                 | As Found/                | R                   | 50,000 50,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 150,000 1 | 00000                                                                           |            |           |      |       |       | ***** |                                                                                             |       |              |   |          |           | Past/fait Compliance storements are the optiments of Automatical Scale Cont. Inseed on data from measurements<br>identified must speedife requirements for its intended application. Autochtend uncertainly (as applicable) is app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AUT(<br>202 M                                                           | tions sha<br>Is. (rain,                                                                                                                                                     | <b>Client Name &amp; Address</b>       | q                               | LOMD.       | 91                                      |           | VA<br>VA            | 5           | e: 365           |                 | <u>= (, ) )X</u>         | 4                   | 2002<br>2002<br>2002                                                                                            | 00000                                                                           |            |           |      |       |       |       |                                                                                             |       |              |   |          |           | opinions of Auto<br>Its intended upp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                         | calibra<br>e result                                                                                                                                                         | le & A                                 | Tel                             | A           | Bensentille                             |           | Ohow ~              | 2           | nspection Cycle: |                 | Client Tolerance (, / )% | X                   |                                                                                                                 |                                                                                 |            |           |      |       |       |       |                                                                                             | J. UL | 4            |   |          |           | therits are the<br>quirtements for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | and/or<br>dize th                                                                                                                                                           | t Nam                                  | ľ,                              | 90          | 21150                                   |           |                     | 1           | nspectiv         |                 | Client ]                 |                     | O                                                                                                               | =                                                                               | <b>E</b> i | 144 g and | -;-  | шţ    | u j 1 | นเม   | 14. j                                                                                       |       |              |   | <u>-</u> | Comments: | mpliance state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                         | Tests<br>jeopar                                                                                                                                                             | Clien                                  | A                               |             | Ŕ                                       |           | Manuf<br>Indicator: | Platform:   | -                |                 | Cent                     | Date                | 4.13.1                                                                                                          | 4-12-                                                                           |            |           |      |       |       |       |                                                                                             |       |              |   |          | Com       | Pass/Fall Control Party Contro |

antely 95% whith a coverage factor of K=2. Form: 5.4.02 L-A-B Accredited Process Control Certificate 3/2/10



# Ion Chromatography Analytical Report

Performed for Big Rivers Energy Owensboro Station Project No. 3648 October 25, 2011

Analyst:\_\_\_\_\_

Michael Ogletree

Reviewer: Patrick Clark P.E

#### **Table of Contents**

| PROJECT SUMMARY                    |   |
|------------------------------------|---|
| General                            |   |
| Analytical Equipment               |   |
| Condition of Samples When Received | 2 |
| Methodology                        |   |
| Detection Limit                    |   |
| QA/QC                              |   |

#### APPENDIX

Results Calibration Data Raw Data Chain of Custody



#### **Project Summary**

#### General

| Project Information              |                |
|----------------------------------|----------------|
| Date Received                    | 10/4/2011      |
| Analytical Protocol              | EPA Method 26A |
| Total Number of Samples Received | 5              |
| Total Number of Blanks Received  | 1              |

#### **Analytical Equipment**

| Equipment Information | Manufacturer | Model         | Serial No. |
|-----------------------|--------------|---------------|------------|
| Ion Chromatograph     | Dionex       | ICS-90        | 02070247   |
| Analytical Column     | Dionex       | AS14A         | 007967     |
| Guard Column          | Dionex       | AG14A         | 009807     |
| Anion Suppressor      | Dionex       | AMMS III 4 mm | 1934       |

| Parameters    | Conditions                                        |
|---------------|---------------------------------------------------|
| Eluent        | 8.0 mM Sodium Carbonate/1.0 mM Sodium Bicarbonate |
| Regenerant    | 0.075 N Sulfuric Acid                             |
| Sample Volume | 10 µl                                             |
| Flow Rate     | 1.0 ml/m                                          |
| Back Pressure | 2,700 PSI                                         |

#### **Condition of Samples When Received**

Samples were received for analysis in good condition. The samples are summarized in the table below:

| Sample ID     | Solution                             | Volume (ml) |
|---------------|--------------------------------------|-------------|
| Run 1A        | 0.1 N H <sub>2</sub> SO <sub>4</sub> | -541        |
| Run 1B        | 0.1 N H <sub>2</sub> SO <sub>4</sub> | 93          |
| Run 2         | 0.1 N H <sub>2</sub> SO <sub>4</sub> | 506         |
| Run 3A        | 0.1 N H <sub>2</sub> SO <sub>4</sub> | 528         |
| Run 3B        | 0.1 N H <sub>2</sub> SO <sub>4</sub> | 126         |
| Reagent Blank | 0.1 N H <sub>2</sub> SO <sub>4</sub> | 125         |

#### Methodology

All samples were analyzed according to the EPA Method 26A procedures found in 40 CFR Part 60 Appendix A.

#### **Detection Limit**

The detection limits for HCl and HF were determined using the procedures found in 40 CFR Part 236, Appendix B, entitled "Definition and Procedure for the Determination of the Method Detection Limit". Seven injections of the 0.5  $\mu$ g/ml standard were analyzed. The detection limit was determined to be <0.0441  $\mu$ g/ml for Cl<sup>-</sup> and <0.0647  $\mu$ g/ml for F-



#### QA/QC

All sample analysis was performed in duplicate with a percent difference within five percent (5%) of the mean.

The chloride and fluoride calibration curves were generated using four calibration standards. The standards were prepared by diluting NIST traceable chloride and fluoride standards with  $0.2 \text{ N H}_2\text{SO}_4$ .

The chloride standard used for this project was a 1000  $\mu$ g/ml chloride solution, lot number 030523, manufactured by Dionex Corporation of Sunnyvale, California.

The fluoride standard used for this project was a 1000 µg/ml fluoride solution, lot number 092209, manufactured by Dionex Corporation of Sunnyvale, California.

Results that were determined to be below the lowest calibration standard and above the minimum detection limit were calculated using the corresponding average response factor.

Samples "Run 1A" and "Run 1B" were combined and analyzed as one sample. Samples "Run 3A" and "Run 3B" were also combined and analyzed as one sample.



# Appendix

- Results
- Calibration Data
- Raw Data
- Chain of Custody



**Results** 

Includes the following:

(t)

- Hydrogen Fluoride Results
- Hydrogen Chloride Results



# HYDROGEN FLUORIDE ANALYSIS

|                           |               | Run 1            |        | Run 3            |  |
|---------------------------|---------------|------------------|--------|------------------|--|
| Sample Parameters         | Reagent Blank | (A & B Combined) | Run 2  | (A & B Combined) |  |
| Volume (ml)               | 125           | 634              | 506    | 654              |  |
| Dilution factor           | 1             | 1                | 1      | 1                |  |
| Peak Area # 1             | 0.0150        | 0.0330           | 0.0360 | 0.0300           |  |
| Peak Area # 2             | 0.0110        | 0.0330           | 0.0370 | 0.0290           |  |
| Average                   | 0.0130        | 0.0330           | 0.0365 | 0.0295           |  |
| Injections % of mean      | 15.4%         | 0.0%             | 1.4%   | 1.7%             |  |
| RESULTS                   |               |                  |        |                  |  |
| Average Response Factor   | x             | x                | x      | x                |  |
| Linear Regression         |               |                  |        |                  |  |
| Fluoride (µg/ml)          | 0.0913        | 0.232            | 0.256  | 0.207            |  |
| Hydrogen Fluoride (µg/ml) | 0.0962        | 0.244            | 0.270  | 0.218            |  |
| Hydrogen Fluoride (mg)    | 0.0120        | 0.155            | 0.137  | 0.143            |  |

### HYDROGEN CHLORIDE ANALYSIS

|                     |               | Run 1            |        | Run 3            |
|---------------------|---------------|------------------|--------|------------------|
| Sample Parameters   | Reagent Blank | (A & B Combined) | Run 2  | (A & B Combined) |
| /olume (ml)         | 125           | 634              | 506    | 654              |
| Dilution factor     | 1             | 1                | 1      | 1                |
| Peak Area # 1       | 0.0110        | 0.0610           | 0.0520 | 0.0410           |
| Peak Area # 2       | 0.0120        | 0.0570           | 0.0500 | 0.0440           |
| Average             | 0.0115        | 0.0590           | 0.0510 | 0.0425           |
| njections % of mean | 4.3%          | 3.4%             | 2.0%   | 3.5%             |

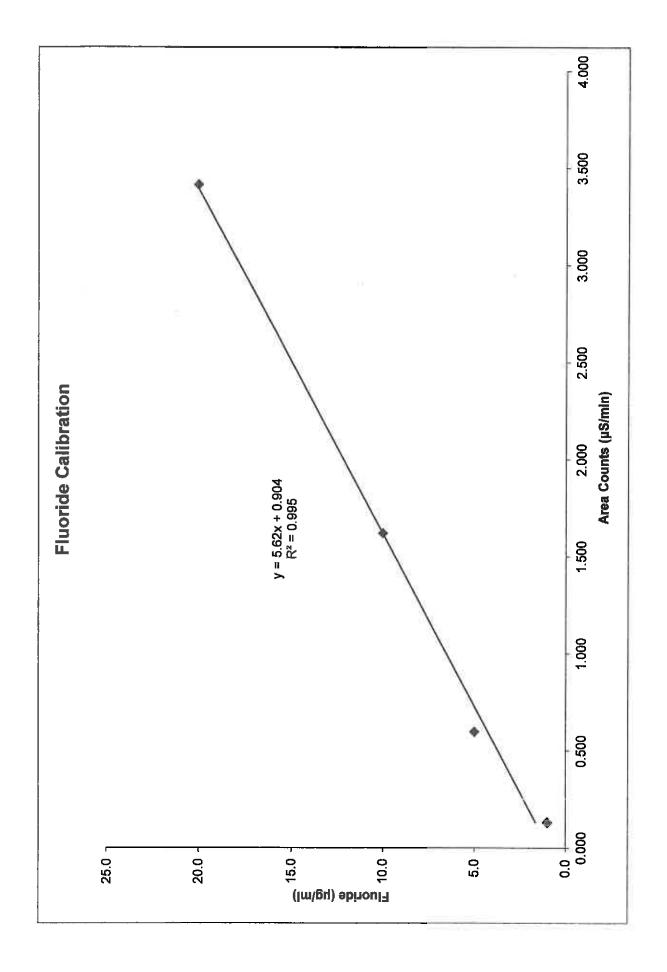
#### RESULTS

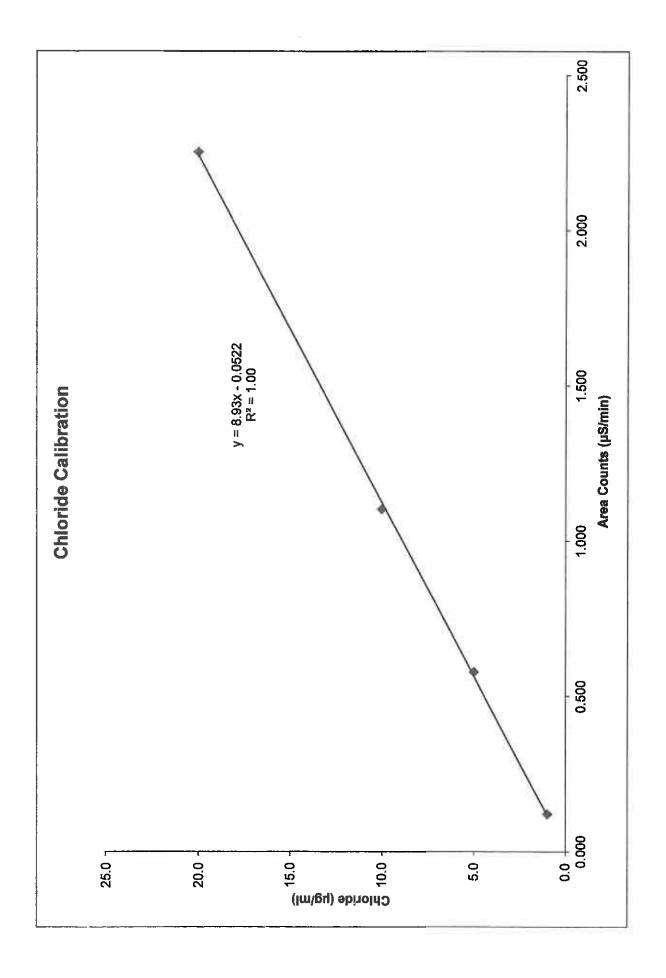
| Average Response Factor   | X         | X     | X     | X     |
|---------------------------|-----------|-------|-------|-------|
| Linear Regression         |           |       |       |       |
| Chloride (µg/ml)          | < 0.0441  | 0.514 | 0.445 | 0.371 |
| Hydrogen Chloride (µg/ml) | < 0.0454  | 0.529 | 0.457 | 0.381 |
| Hydrogen Chloride (mg)    | < 0.00567 | 0.335 | 0.231 | 0.249 |

Calibration Data

Includes the following:

- Hydrogen Fluoride Standards
- Hydrogen Chloride Standards
- Detection Limits
- Hydrogen Fluoride Calibration Curve
- Hydrogen Chloride Calibration Curve





| Ion Chromatograph            | Dionex ICS-90     |                |            |            |  |  |  |  |
|------------------------------|-------------------|----------------|------------|------------|--|--|--|--|
| Data Acquisition             | Dionex PeakNet 6. | 4              |            |            |  |  |  |  |
| Carrier Gas                  | Nitrogen          | Nitrogen       |            |            |  |  |  |  |
| Injection Type               | Manual            |                |            |            |  |  |  |  |
| Injection Volume (µI)        | 10.0              |                |            |            |  |  |  |  |
| Column Type                  | AS-14A            |                |            |            |  |  |  |  |
| Detector Type                | Suppressed Condu  | uctivity ECD-1 |            |            |  |  |  |  |
| Calibration Summary          | Standard 1        | Standard 2     | Standard 3 | Standard 4 |  |  |  |  |
| Fluoride (µg/ml)             | 1.0               | 5.0            | 10.0       | 20.0       |  |  |  |  |
| Pre Analysis Injection # 1   | 0.1250            | 0.6050         | 1.6210     | 3.3990     |  |  |  |  |
| Pre Analysis Injection # 2   | 0.1270            | 0.6050         | 1.6100     | 3.4180     |  |  |  |  |
| Average                      | 0.126             | 0.605          | 1.62       | 3.41       |  |  |  |  |
| % difference of injections   | 1.6%              | 0.0%           | 0.7%       | 0.6%       |  |  |  |  |
| Post Analysis Injection #1   | 0,1340            | 0.5900         | 1.6180     | 3.4350     |  |  |  |  |
| Post Analysis Injection # 2  | 0.1350            | 0.5850         | 1.6220     | 3.4060     |  |  |  |  |
| Average                      | 0.135             | 0.588          | 1.62       | 3.42       |  |  |  |  |
| % difference of injections   | 0.7%              | 0.9%           | 0.2%       | 0.9%       |  |  |  |  |
| Overall Average              | 0.130             | 0.596          | 1.62       | 3.41       |  |  |  |  |
| Pre/Post Analysis, % of mean | 3.3%              | ·i 1.5%        | 0.1%       | 0.2%       |  |  |  |  |
| RESULTS                      |                   |                |            |            |  |  |  |  |
| Response Factor              | 7.68              | 8.39           | 6,18       | 5,86       |  |  |  |  |
| Average Response Factor      | 7.03              |                |            |            |  |  |  |  |
| <b>a</b> .                   |                   |                |            |            |  |  |  |  |

| Average Response Factor | 7.03  |
|-------------------------|-------|
| Slope                   | 5.62  |
| Intercept               | 0.904 |

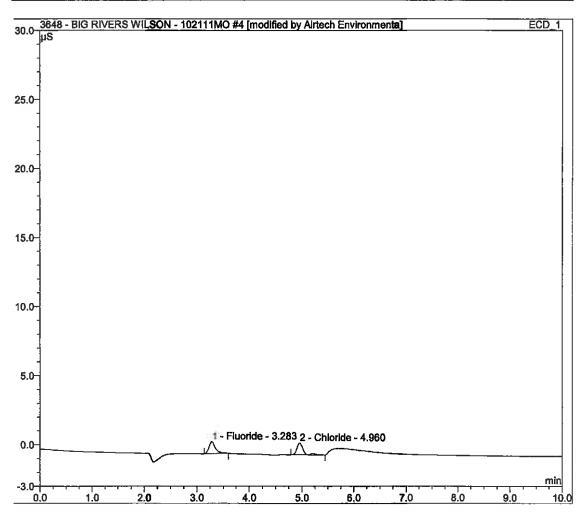
| Calibration Summary          | Standard 1 | Standard 2 | Standard 3 | Standard 4   |
|------------------------------|------------|------------|------------|--------------|
| Chloride (µg/mi)             | 1.0        | 5.0        | 10.0       | 20.0         |
| Pre Analysis injection # 1   | 0.1230     | 0.5800     | 1.1040     | 2.2610       |
| Pre Analysis Injection # 2   | 0.1200     | 0.5810     | 1.1200     | 2.2870       |
| Average                      | 0.122      | 0.581      | 1.11       | 2.27         |
| % difference of injections   | 2.5%       | 0.2%       | 1.4%       | 1 <b>.1%</b> |
| Post Analysis Injection # 1  | 0.1210     | 0.5760     | 1.0880     | 2.2150       |
| Post Analysis Injection # 2  | 0.1200     | 0.5730     | 1.0940     | 2.2470       |
| Average                      | 0.121      | 0.575      | 1.09       | 2.23         |
| % difference of Injections   | 0.8%       | 0.5%       | 0.5%       | 1.4%         |
| Overall Average              | 0.121      | 0.578      | 1.10       | 2.25         |
| Pre/Post Analysis, % of mean | 0.4%       | 0.5%       | 1.0%       | 1.0%         |
| RESULTS                      |            |            |            |              |
| Response Factor              | 8.26       | 8.66       | 9.08       | 8.88         |
| Average Response Factor      | 8.72       |            |            |              |
| Slope                        | 8.93       |            |            |              |
| Intercept                    | -0.0522    |            |            |              |

| Detection Limit Parameters            | Chloride | Fluoride         |
|---------------------------------------|----------|------------------|
| Standard (µg/ml)                      | 0.5      | 0.5              |
| Injection 1                           | 0.0640   | 0.0730           |
| Injection 2                           | 0.0590   | 0.0670           |
| Injection 3                           | 0.0590   | 0.0850           |
| Injection 4                           | 0.0600   | 0.0650           |
| Injection 5                           | 0.0590   | 0.0650           |
| Injection 6                           | 0.0590   | 0.0620           |
| Injection 7                           | 0.0570   | 0.0640           |
| Average                               | 0.0596   | 0.0659           |
| RESULTS                               |          |                  |
| Response Factor                       | 8.39     | 7.5 <del>9</del> |
| Standard Deviation                    | 0.00215  | 0.00348          |
| No of Samples (n)                     | 7        | 7                |
| Student t value (t(0.975))            | 2.447    | 2.447            |
| Calculated limit of detection (µg/ml) | 0.0441   | 0.0647           |



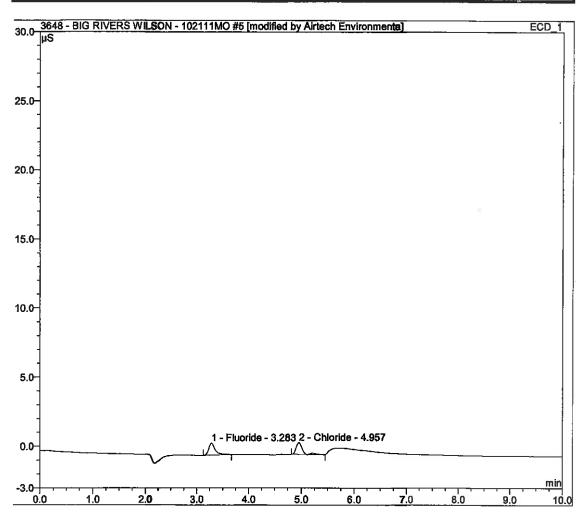


Raw Data


Includes the following:

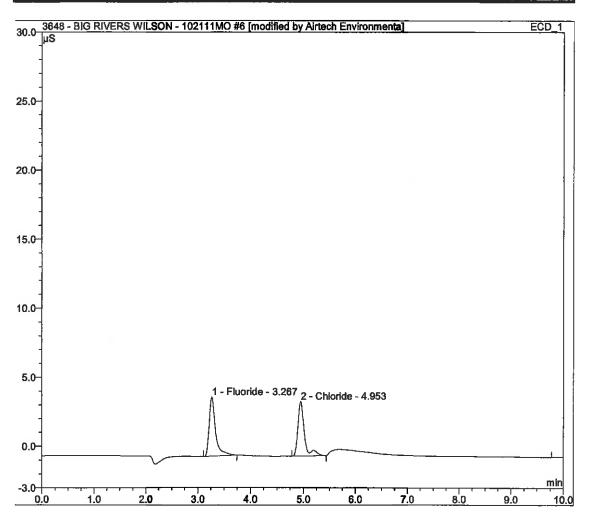
- Pre Analysis Chromatograms
- Sample Chromatograms
- Drift Check Chromatograms
- Post Analysis Chromatograms
- Lab Book Data Entry




| Sample Name.   | cal std 1      | ini Vol         | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | standard       | Dilution Factor | 1.0000 |
| Program:       | ChlorideCal    | Operator        | n.a.   |
| Inj. Date/Time | 21.10.11 11:31 | Run Time        | 15.00  |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.28        | Fluoride  | BMB* | 0.125          | 0.873        | 0.1081          |
| 2   | 4.96        | Chloride  | BMB* | 0.123          | 0.864        | 0.0049          |
|     |             | TOTAL:    |      | 0.25           | 1.74         | 0.11            |

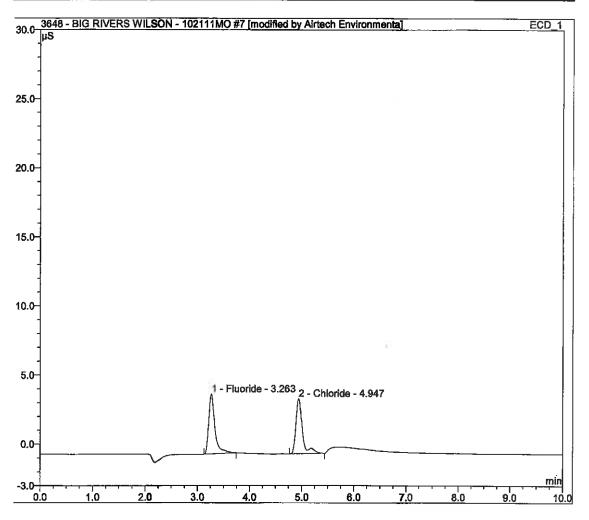



| and the second se |                |                       |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|----------|
| Sample Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cal std 1      | Ini Vol. 10.0         |          |
| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | standard       | Dilution Factor 1 000 | <b>.</b> |
| Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ChiorideCal    | Operator n.a.         |          |
| Inj. Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.10.11 11.47 | Run Time: 15.00       |          |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.28        | Fluoride  | BMB* | 0.127          | 0.877        | 0.1104          |
| 2   | 4.96        | Chloride  | BMB* | 0.120          | 0.855        | 0.0048          |
|     |             | TOTAL:    |      | 0.25           | 1.73         | 0.12            |

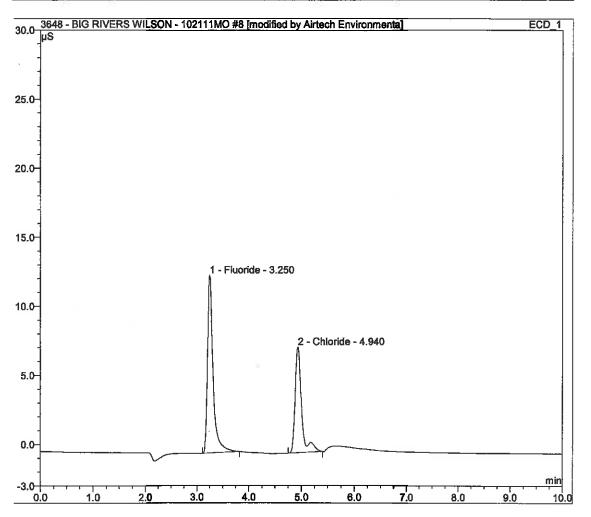


| Sample Name:   | cal std 2      | Inj Vol         | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | standard       | Dilution Factor | 1.0000 |
| Program        | ChlorideCal    | Operator        | n-a    |
| Inj Date/Time. | 21.10.11 12:03 | Run Time.       | 15.00  |


| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.27        | Fluoride  | BMB* | 0.605          | 4.287        | 0.5236          |
| 2   | 4.95        | Chloride  | BMB* | 0.580          | 3.955        | 0.0230          |
|     | TOTAL:      |           | 1,18 | 8.24           | 0.55         |                 |

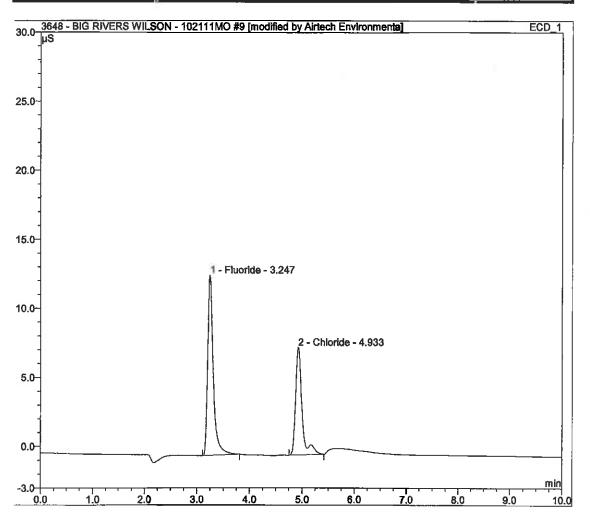


ANION\_report/Integration


| Sample Name:  | cal std 2      | Inj. Vol         | 10.0   |
|---------------|----------------|------------------|--------|
| Sample Type   | standard       | Dilution Factor: | 1.0000 |
| Program.      | ChlorideCat    | Operator         | n a.   |
| inj Date/Time | 21.10.11 12:23 | Run Time         | 15.00  |

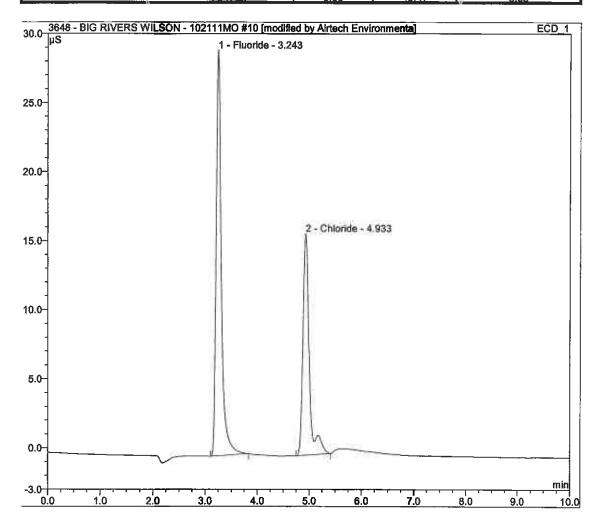
| No. | Time<br>min | Peak Name | Туре | Area<br>µ\$*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|-----------------|--------------|-----------------|
| 1   | 3.26        | Fluoride  | BMB* | 0.605           | 4.353        | 0.5235          |
| 2   | 4.95        | Chloride  | BMB* | 0.581           | 3.995        | 0.0231          |
|     |             | TOTAL:    |      | 1.19            | 8.35         | 0.55            |




|                | the second s |                 |        |
|----------------|----------------------------------------------------------------------------------------------------------------|-----------------|--------|
| Sample Name    | cal std 3                                                                                                      | Inj. Vol.       | 10.0   |
| Sample Type    | standard                                                                                                       | Dilution Factor | 1.0000 |
| Program        | ChlorideCal                                                                                                    | Operator        | n.a    |
| Inj. Date/Time | 21.10.11 12:50                                                                                                 | Run Time.       | 15.00  |

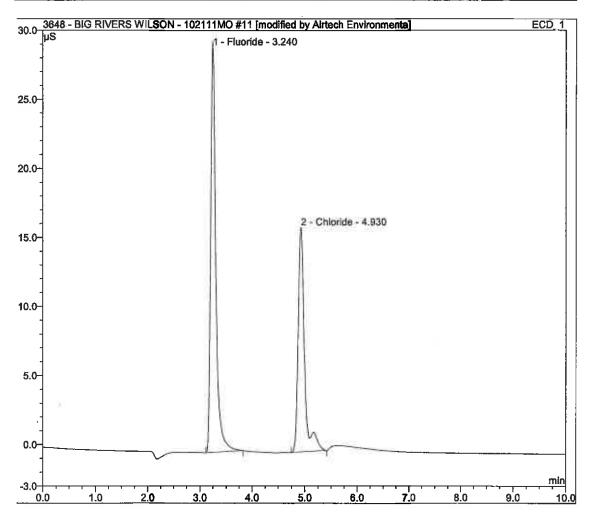
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.25        | Fluoride  | BMB* | 1.621          | 12.871       | 1.4035          |
| 2   | 4.94        | Chloride  | BMB* | 1.104          | 7.663        | 0.0439          |
|     | <u>.</u>    | TOTAL:    |      | 2.73           | 20.53        | 1.45            |




| Sample Name.  | cal std 3      | Inj Vol. 10.0           |  |
|---------------|----------------|-------------------------|--|
| Sample Type   | standard       | Dilution Factor: 1 0000 |  |
| Program:      | ChlorideCal    | Operator n.a.           |  |
| Inj Date/Time | 21 10 11 13:07 | Run Time: 15.00         |  |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.25        | Fluoride  | BMB* | 1.610          | 13.040       | 1.3940          |
| _ 2 | 4.93        | Chloride  | BMB* | 1.120          | 7.775        | 0.0445          |
|     |             | TOTAL:    |      | 2.73           | 20.82        | 1.44            |




| Sample Nøme.   | cal std 4      | Inj. Vol 10.0           |
|----------------|----------------|-------------------------|
| Sample Type.   | standard       | Dilution Factor: 1.0000 |
| Program:       | ChlorideCal    | Operator: n.a.          |
| Inj. Date/Time | 21 10.11 13:24 | Run Time: 15.00         |

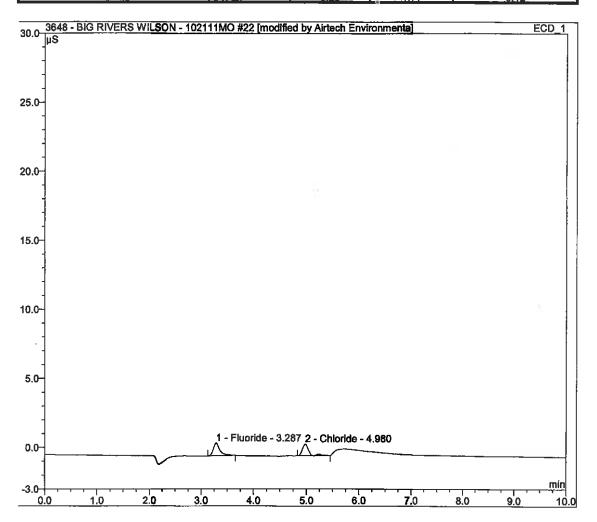
| No | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|----|-------------|-----------|------|----------------|--------------|-----------------|
| 1  | 3.24        | Fluoride  | BMB* | 3.399          | 29.427       | 2.9429          |
| 2  | 4.93        | Chloride  | BMB* | 2.261          | 16.047       | 0.0898          |
|    |             | TOTAL:    |      | 5.66           | 45.47        | 3.03            |



| Sample Name.    | cal std 4      | Inj. Vol.        | 10.0   |
|-----------------|----------------|------------------|--------|
| Sample Type     | standard       | Dilution Factor: | 1.0000 |
| Program         | ChlorideCal    | Operator         | n.a.   |
| Inj. Date/Time: | 21.10.11 13:40 | Run Time.        | 15.00  |

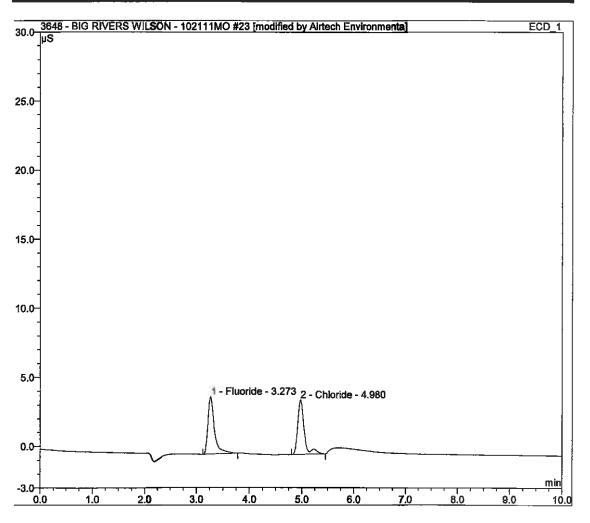
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Helght<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.24        | Fluoride  | BMB* | 3.418          | 29.759       | 2.9596          |
| 2   | 4.93        | Chloride  | BMB* | 2.287          | 16.274       | 0.0909          |
|     | TOTAL:      |           |      | 5.71           | 46.03        | 3.05            |




| Sample Name:   | cal std 1      | Inj. Vol.: 10.0         |
|----------------|----------------|-------------------------|
| Sample Type:   | standard       | Dilution Factor: 1.0000 |
| Program,       | ChlorideCal    | Operator n.a.           |
| Inj. Date/Time | 24.10.11 10:10 | Run Time 15.00          |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |  |
|-----|-------------|-----------|------|----------------|--------------|-----------------|--|
| 1   | 3.29        | Fluoride  | BMB* | 0.134          | 0.909        | 0,1162          |  |
| 2   | 4.98        | Chloride  | BMB* | 0.121          | 0.844        | 0.0048          |  |
|     |             | TOTAL:    |      | 0.26           | 1.75         | 0,12            |  |




| Sample Name:   | cal std 1      | Inj. Vol. 10.0         |
|----------------|----------------|------------------------|
| Sample Type:   | standard       | Dilution Factor 1.0000 |
| Program        | ChlorideCal    | Operator: n.a.         |
| Inj Date/Time; | 24.10.11 10:27 | Run Time: 15.00        |

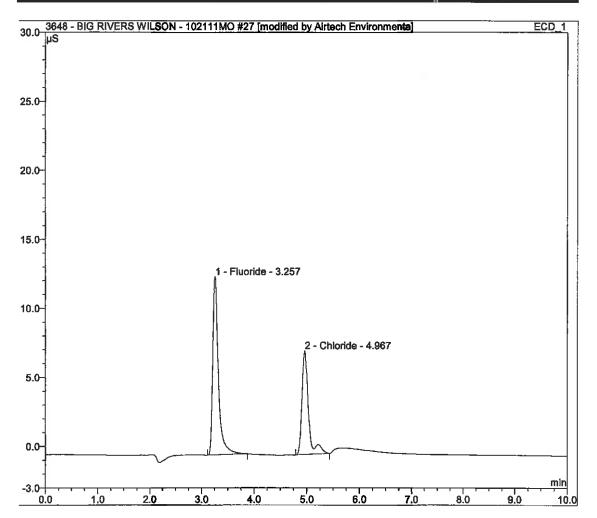
| No | Time<br>min | Peak Name | Туре | Area<br>uS*min | Height<br>µS | Amount<br>ug/ml |
|----|-------------|-----------|------|----------------|--------------|-----------------|
| 1  | 3.29        | Fluoride  | BMB* | 0.135          | 0.925        | 0.1170          |
| 2  | 4.98        | Chloride  | BMB* | 0.120          | 0.841        | 0.0047          |
|    | TOTAL:      |           |      |                | 1.77         | 0.12            |



| Sample Name:   | cal std 2      | Inj. Vol        | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | standard       | Dilution Factor | 1,0000 |
| Program        | ChlorideCal    | Operator:       | n.a.   |
| Inj. Date/Time | 24.10.11 10:45 | Run Time.       | 15.00  |

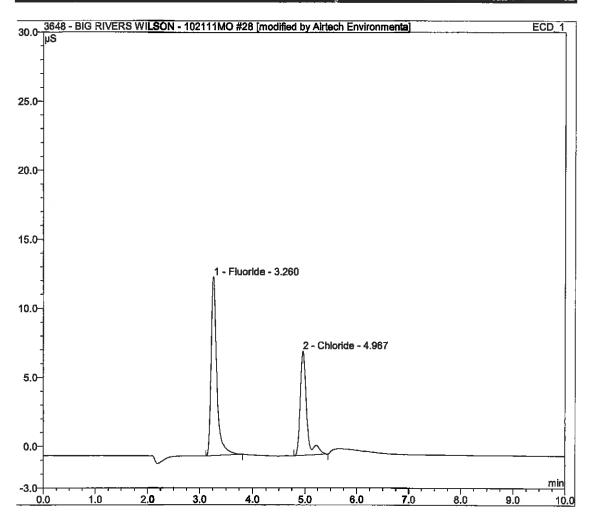
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS |        |
|-----|-------------|-----------|------|----------------|--------------|--------|
| 1   | 3.27        | Fluoride  | BMB* | 0.590          | 4.141        | 0.5110 |
| 2   | 4.98        | Chloride  | BMB* | 0.576          | 3.929        | 0.0229 |
|     | TOTAL:      |           |      | 1.17           | 8.07         | 0.53   |




| Sample Name   | cal std 2      | Inj Vol         | 10.0   |
|---------------|----------------|-----------------|--------|
| Sample Type   | standard       | Dilution Factor | 1.0000 |
| Program       | ChiorideCal    | Operator        | n.a.   |
| Inj Date/Time | 24.10.11 11 16 | Run Time:       | 15.00  |

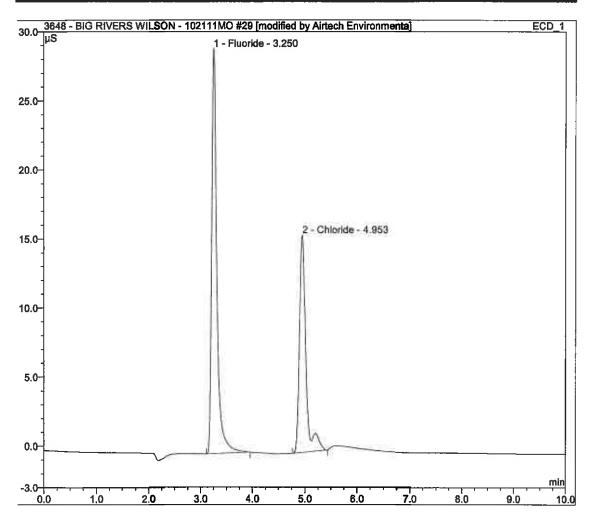
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/mi |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.27        | Fluoride  | BMB* | 0.585          | 4.142        | 0.5064          |
| 2   | 4.97        | Chloride  | BMB* | 0.573          | 3.935        | 0.0228          |
|     | TOTAL:      |           |      | 1.16           | 8.08         | 0.53            |




| Sample Name:    | cal std 3      | inj Vol         | 10.0   |
|-----------------|----------------|-----------------|--------|
| Sample Type:    | standard       | Dilution Factor | 1.0000 |
| Program.        | ChlorideCal    | Operator        | n.a.   |
| Inj. Date/Time: | 24.10.11 11:48 | Run Time:       | 15.00  |

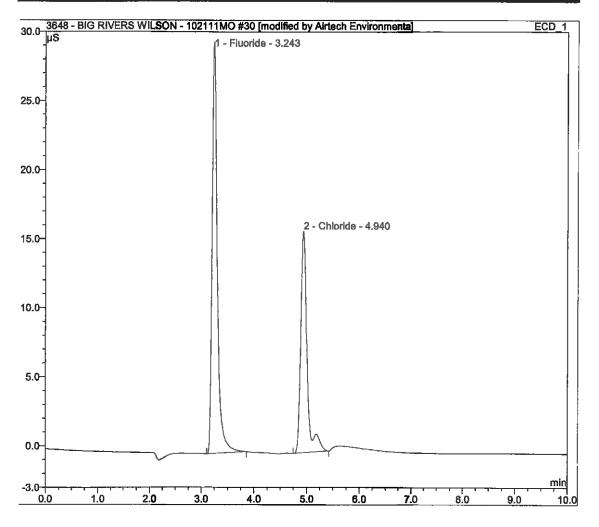
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.26        | Fluoride  | BMB* | 1.618          | 12.895       | 1.4012          |
| 2   | 4.97        | Chloride  | BMB* | 1.088          | 7.501        | 0.0432          |
|     | TOTAL:      |           |      | 2.71           | 20.40        | 1.44            |




| Sample Name.    | cal std 3      |       | Inj. Vol.       | 10.0   |           |
|-----------------|----------------|-------|-----------------|--------|-----------|
| Sample Type:    | standard       |       | Dilution Factor | 1.0000 | 1. S. 199 |
| Program:        | ChlorideCal    |       | Operator        | n.a.   |           |
| Inj, Date/Time. | 24.10.11 12:07 | 1.1.4 | Run Time:       | 15.00  |           |

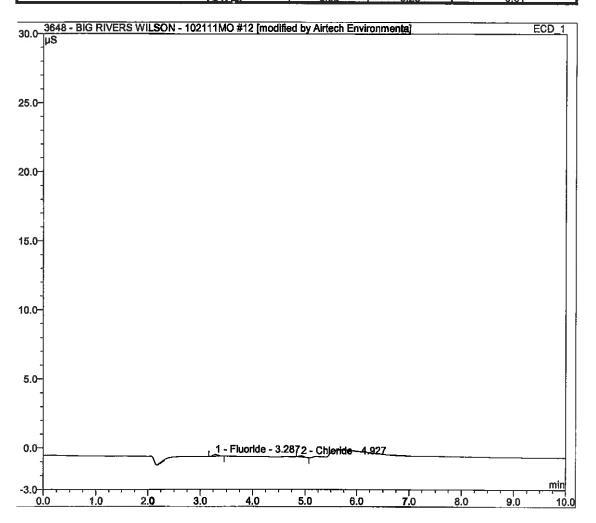
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*mín | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.26        | Fluoride  | BMB* | 1.622          | 12.941       | 1.4045          |
| 2   | 4.97        | Chloride  | BMB* | 1.094          | 7.552        | 0.0435          |
|     |             | TOTAL:    |      | 2.72           | 20.49        | 1.45            |




| Sample Name:    | cal std 4      | Inj. Vol.:      | 10.0   |     |
|-----------------|----------------|-----------------|--------|-----|
| Sample Type:    | standard       | Dilution Factor | 1.0000 | ź.  |
| Program         | ChlorideCal    | Operator        | n.a. – |     |
| Inj. Date/Time: | 24.10.11 12:58 | Run Time:       | 15.00  | ÷., |

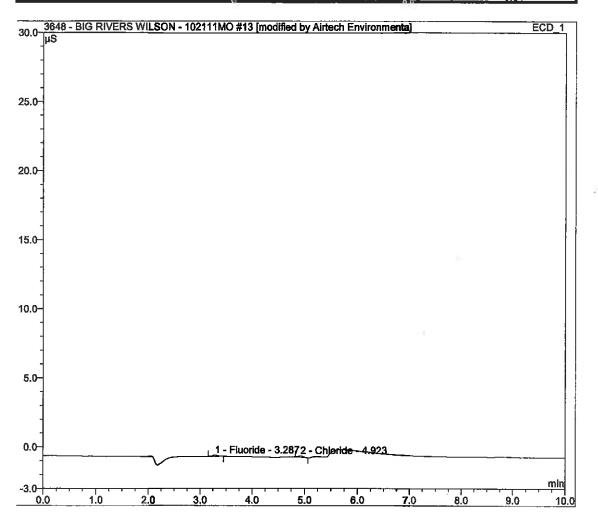
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.25        | Fluoride  | BMB* | 3.435          | 29.381       | 2.9740          |
| 2   | 4.95        | Chloride  | BMB* | 2.215          | 15.748       | 0.0880          |
|     | TOTAL:      |           |      | 5.65           | 45.13        | 3.06            |




| Sample Name    | cal std 4      | Inj Vol.        | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | standard       | Dilution Factor | 1.0000 |
| Program        | ChlorideCal    | Operator        | n a    |
| Inj Date/Time: | 24.10.11 13:14 | Run Time.       | 15.00  |

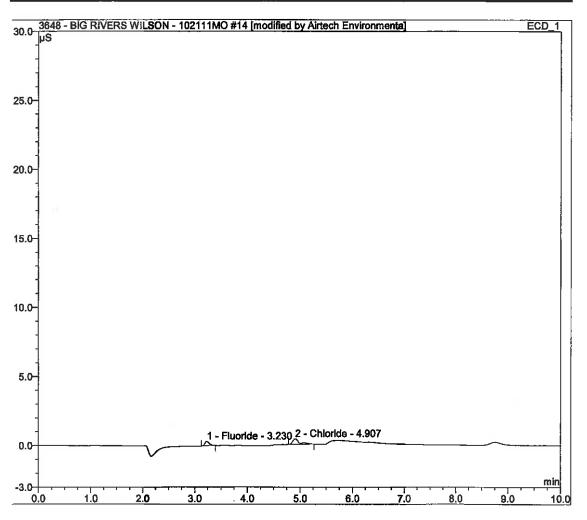
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.24        | Fluoride  | BMB* | 3.406          | 29.794       | 2.9488          |
| 2   | 4.94        | Chloride  | BMB* | 2.247          | 16.028       | 0.0893          |
|     | TOTAL:      |           |      | 5.65           | 45.82        | 3.04            |




| Sample Name   | reagent blank  | Inj. Vol        | 10.0   |
|---------------|----------------|-----------------|--------|
| Sample Type.  | blank          | Dilution Factor | 1.0000 |
| Program:      | ChlorideCal    | Operator        | n.a.   |
| Inj Date/Time | 21 10.11 13:55 | Run Time:       | 15.00  |

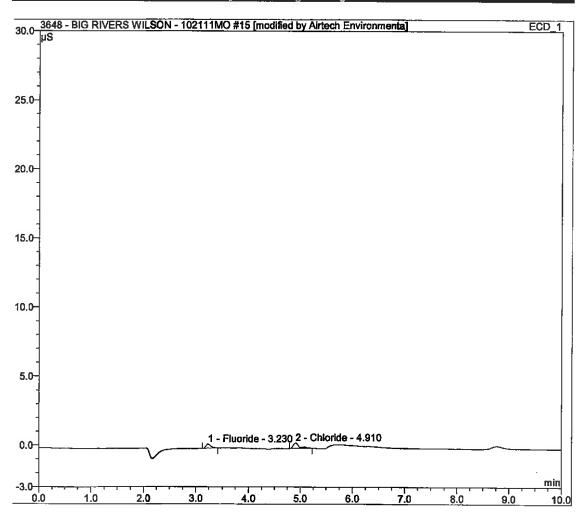
| No.    | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/mi |
|--------|-------------|-----------|------|----------------|--------------|-----------------|
| 1      | 3.29        | Fluoride  | BMB* | 0.015          | 0.133        | 0.0129          |
| 2      | 4.93        | Chloride  | BMB* | 0.011          | 0.095        | 0.0004          |
| TOTAL: |             |           |      | 0.03           | 0.23         | 0.01            |




| Sample Name.   | reagent blank  | Iny Vol.        | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | blank          | Dilution Factor | 1.0000 |
| Program        | ChlorideCal    | Operator:       | n.a.   |
| Inj. Date/Time | 21.10.11 14.13 | Run Time.       | 15.00  |

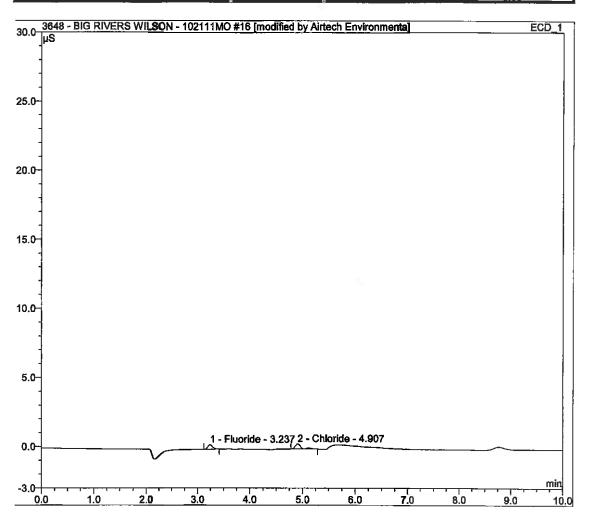
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.29        | Fluoride  | BMB* | 0.011          | 0.099        | 0.0099          |
| 2   | 4.92        | Chloride  | BMB* | 0.012          | 0.101        | 0.0005          |
|     | TOTAL:      |           |      |                | 0.20         | 0.01            |




| Sample Name.  | Run 1 Combined | Inj Vol         | 10.0   |
|---------------|----------------|-----------------|--------|
| Sample Type   | unknown        | Dilution Factor | 1.0000 |
| Program       | ChlorideCal    | Operator        | n,a,   |
| Inj Date/Time | 21.10.11 14:41 | Run Time:       | 15.00  |

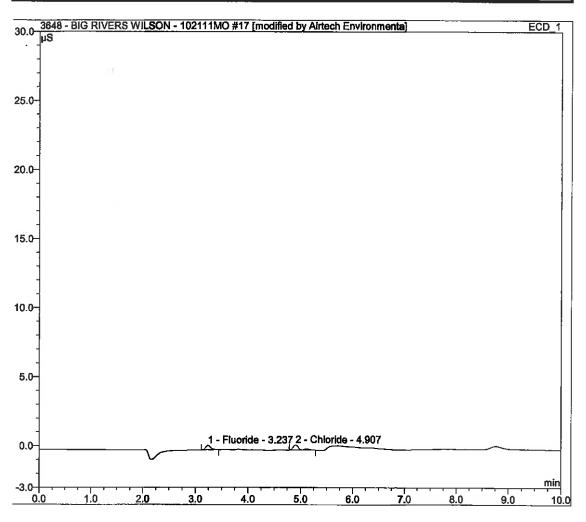
| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.23        | Fluoride  | BMB* | 0.033          | 0.326        | 0.0286          |
| . 2 | 4.91        | Chloride  | BMB* | 0.061          | 0.411        | 0.0024          |
|     | TOTAL:      |           |      |                | 0.74         | 0.03            |




| Sampie Name.  | Run 1 Combined | inj Vol         | 10.0   |
|---------------|----------------|-----------------|--------|
| Sample Type.  | unknown        | Dilution Factor | 1,0000 |
| Program       | ChlorideCal    | Operator        | n.a.   |
| Inj Date/Time | 21.10.11 14:57 | Run Time        | 15.00  |

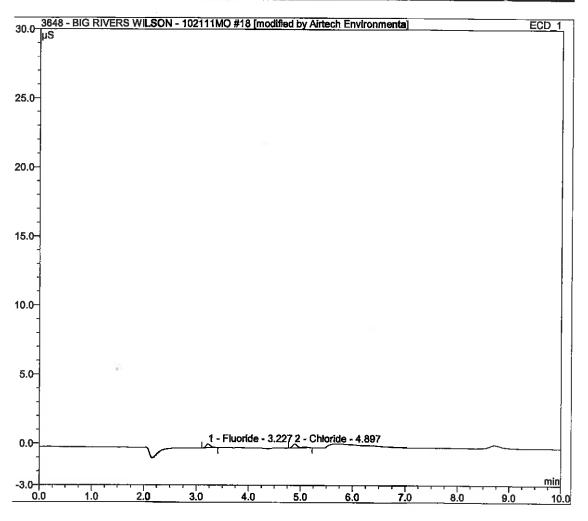
| No.     | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|---------|-------------|-----------|------|----------------|--------------|-----------------|
| 1       | 3.23        | Fluoride  | BMB* | 0.033          | 0.314        | 0.0283          |
| 2       | 4.91        | Chloride  | BMB* | 0.057          | 0.405        | 0.0023          |
| TOTA!.; |             |           |      | 0.09           | 0.72         | 0.03            |




| Sample Name:  | Run 2          | Inj. Vol. 10.0          |     |
|---------------|----------------|-------------------------|-----|
| Sample Type   | unknown        | Dilution Factor: 1 0000 | ?** |
| Program:      | ChlorideCal    | Operator: n.a.          |     |
| Inj Date/Time | 21 10,11 15:15 | Run Time: 15.00         |     |

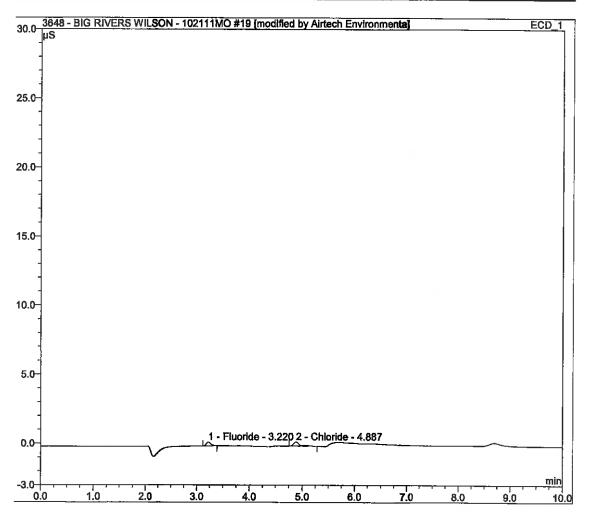
| No. | Time<br>mln | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.24        | Fluoride  | BMB* | 0.036          | 0.341        | 0.0313          |
| 2   | 4.91        | Chloride  | BMB* | 0.052          | 0.375        | 0.0021          |
|     |             | TOTAL:    |      | 0.09           | 0.72         | 0.03            |




| Sample Name.   | Run 2          | In/ Vol.        | 10.0   |
|----------------|----------------|-----------------|--------|
| Sample Type    | unknown        | Dilution Factor | 1.0000 |
| Program        | ChtorideCal    | Operator        | n.a.   |
| Inj. Date/Time | 21.10.11 15:31 | Run Time        | 15.00  |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.24        | Fluoride  | BMB* | 0.037          | 0.338        | 0.0318          |
| 2   | 4.91        | Chloride  | BMB* | 0.050          | 0.370        | 0.0020          |
|     |             | TOTAL:    |      | 0.09           | 0.71         | 0.03            |




| Sample Name.  | Run 3 Combined | Inj. Vol        | 10.0   |  |
|---------------|----------------|-----------------|--------|--|
| Sample Type.  | unknown        | Dilution Factor | 1.0000 |  |
| Program.      | ChlorideCal    | Operator        | n.a.   |  |
| Inj Date/Time | 21.10.11 15:48 | Run Time.       | 15.00  |  |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------|-----------------|
| 1   | 3.23        | Fluoride  | BMB* | 0.030          | 0.288  | 0.0259          |
| 2   | 4.90        | Chloride  | BMB* | 0.041          | 0.296  | 0.0016          |
|     |             | TOTAL:    |      | 0.07           | 0.58   | 0.03            |



| Sample Name   | Run 3 Combined | inj Vol 10.0            |
|---------------|----------------|-------------------------|
| Sample Type   | unknown        | Dilution Factor: 1.0000 |
| Program.      | ChlorideCal    | Operator n.a.           |
| Inj Dete/Time | 21,10,11 16:06 | Run Time: 15.00         |

| No. | Time<br>min | Peak Name | Туре | Area<br>µS*min | Height<br>µS | Amount<br>ug/ml |
|-----|-------------|-----------|------|----------------|--------------|-----------------|
| 1   | 3.22        | Fluoride  | BMB* | 0.029          | 0.286        | 0.0253          |
| 2   | 4.89        | Chloride  | BMB* | 0.044          | 0.303        | 0.0017          |
|     |             | TOTAL:    | ·    | 0.07           | 0.59         | 0.03            |



|                           |         |                                                                               | 140                                    |
|---------------------------|---------|-------------------------------------------------------------------------------|----------------------------------------|
| 10/4/11<br>Essurement (9) |         | AIRTECH www.airtechenv.com<br>Environmental<br>Services Inc. 800 • 941 • 6230 | •/4/11                                 |
| NA.                       |         | Services Inc.                                                                 | ······································ |
| NA                        |         |                                                                               |                                        |
| NA                        |         |                                                                               |                                        |
| NA                        |         |                                                                               |                                        |
| NA                        |         |                                                                               | ••••                                   |
| NA                        |         |                                                                               |                                        |
| 83                        |         |                                                                               |                                        |
| B3                        |         |                                                                               | <del></del>                            |
| 83                        |         | Big Rivers - Wilson M26A                                                      |                                        |
| 63                        |         | , , , , , , , , , , , , , , , , , , ,                                         |                                        |
| 83                        |         | 10 Vol. (m)                                                                   |                                        |
| 63                        |         | Run 1A 541 2 634 combined                                                     | U. (                                   |
| 63                        |         | Pun 1B 93 5                                                                   |                                        |
| 63                        |         | Kun 2 506                                                                     |                                        |
| <u> </u>                  |         | Run 34 528 2 654 combine                                                      | <u>Us</u>                              |
| 83                        |         | <u>Run 38</u> 126 )                                                           | N                                      |
| \$3                       |         | Reagant Blank 125                                                             |                                        |
| 83                        | <b></b> |                                                                               |                                        |
| > 83                      |         | Fractions A" + "B" Fractions we                                               |                                        |
| <u>0 NA</u>               |         | Gractions A + B" Fractions we<br>combined for analysis,                       | re                                     |
| > <u>NA</u>               |         | Compired for andigs                                                           |                                        |
| C                         |         | A                                                                             |                                        |
| 10 83                     |         |                                                                               |                                        |
| 0 63                      |         |                                                                               |                                        |
| 2 NA                      |         |                                                                               |                                        |
| 0 55.9                    |         |                                                                               |                                        |
| .0 61.5                   |         | -                                                                             |                                        |
| 68,6<br>0 muliqu          |         |                                                                               |                                        |
|                           |         |                                                                               |                                        |

Chain of Custody

Includes the following:

• Field Chain of Custody



|                                      | Kiotes                                                                                  |                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>2<br>2                          |                                                                                         |                                                                                                                                                                              |
|                                      |                                                                                         | Carrier<br>Carrier<br>Laboratory<br>Contact<br>Addreass<br>Phone<br>Faa<br>Date/filme                                                                                        |
| 792                                  | childen " X                                                                             | in out of                                                                                                                                                                    |
| 9-80-11<br>MH                        | Sample Description                                                                      | Railinquished By<br>(signature)<br>(printed)<br>(printed)<br>Dataf Time<br>Accepted By<br>(signature)<br>(signature)<br>(ortrited)<br>(ortrited)<br>(ortrited)<br>(ortrited) |
| Completed By                         | Emp Lind                                                                                |                                                                                                                                                                              |
| Rig Rivers<br>Livens Dora, K         | Run No. Date<br>1 2 9/50<br>2 2 9/50<br>3 9/50<br>3 9/50<br>3/64/6 9/30                 | Milline in the                                                                                                                                                               |
| riget runnes.<br>Client<br>Comments: | DNo. P<br>Kurt A<br>Runt R<br>Runt R<br>Runt R<br>Run 2<br>Run 2<br>Run 2<br>Run 2<br>R | Relinquished By<br>(signature)<br>(printed)<br>Date/Time<br>Accepted By<br>(printed)<br>(printed)<br>Date/Time                                                               |

Airtech Environmental Services Inc. 801A Country Club Drive Bensenville, IL 60108 Phone: (630) 860-4740, Fax: (630) 860 4745

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

~à

| <b>Airtech Environmental Services, Inc.</b><br>601A Country Club Drive<br>Bensenville, IL 60106 |
|-------------------------------------------------------------------------------------------------|
| Project Number: 3648                                                                            |
| Antimony, Arsenic, Beryllium, Cadmium,<br>Chromium, Cobalt, Lead,<br>Manganese and Nickel       |
| EPA Method 29 Analysis                                                                          |
| Analytical Report<br>17506                                                                      |
| Element One, Inc.                                                                               |

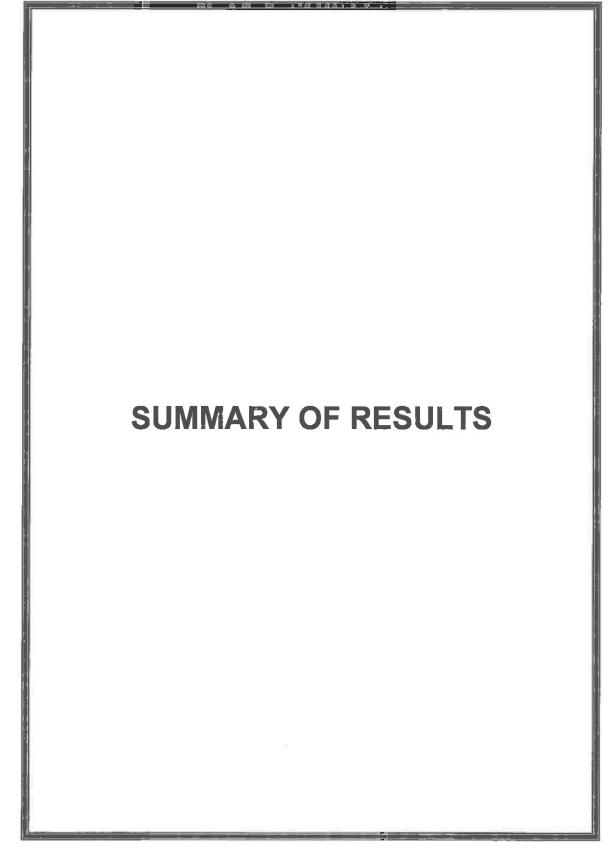
ור

Element One, Inc. 5022-C Wrightsville Av., Wilmington, NC 28403 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com

**E**11

The following data for Analytical Report 17506 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

**Review by:** 


Daphne Woodman, Chemist October 24, 2011

Report Reviewed and Finalized By:

Smi

Ken Smith, Laboratory Director October 25, 2011

elementOne 17506 Airtech M29 Report Packet.doc Page 2 of 28



elementOne 17506 Airtech M29 Report Packet.doc Page 3 of 28

# **Summary of Analysis**

# Front Half - Summary of Method 29 Metals Analysis

| Element   | Stack R1<br>e17506-1 FH<br>Total μg | Stack R2<br>e17506-2 FH<br>Total μg | Stack R2<br>e17506-2 FH dup<br>Total μg | Stack R3<br>e17506-3 FH<br>Total µg | Reagent Blank<br>e17506-4 FH<br>Total μg |
|-----------|-------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------|
| Antimony  | 0.262                               | 1.42                                | 1.41                                    | 0.202                               | < 0.1                                    |
| Arsenic   | 2.43                                | 2.13                                | 2.12                                    | 2.40                                | < 0.1                                    |
| Beryllium | < 0.025                             | < 0.025                             | < 0.025                                 | < 0.025                             | < 0.025                                  |
| Cadmium   | 0.228                               | 0.115                               | 0.108                                   | < 0.1                               | < 0.1                                    |
| Chromium  | 32.9                                | 8.84                                | 8.60                                    | 4.99                                | 1.64                                     |
| Cobalt    | 0.692                               | 0.323                               | 0.316                                   | 0.190                               | < 0.1                                    |
| Lead      | 1.36                                | 0.938                               | 0.916                                   | 0.825                               | 0.342                                    |
| Manganese | 10.3                                | 4.19                                | 4.22                                    | 2.81                                | 1.55                                     |
| Nickel    | 123                                 | 69.3                                | 69.6                                    | 25.4                                | 1.25                                     |
| Selenium  | 38.5                                | 30.8                                | 30.6                                    | 44.3                                | < 0.1                                    |

# Back Half - Summary of Method 29 Metals Analysis

| Element   | Stack R1<br>e17506-1 BH<br>Total μg | Stack R2<br>e17506-2 ВН<br>Total µg | Stack R2<br>e17506-2 BH dup<br>Total µg | Stack R3<br>e17506-3 BH<br>Total μg | Reagent Blank<br>e17506-4 BH<br>Total µg |
|-----------|-------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------|
| Antimony  | 0.270                               | 0.139                               | 0.136                                   | 0.103                               | < 0.1                                    |
| Arsenic   | 1.38                                | 0.587                               | 0.597                                   | 0.305                               | < 0.1                                    |
| Beryllium | < 0.025                             | < 0.025                             | < 0.025                                 | < 0.025                             | < 0.025                                  |
| Cadmium   | < 0.1                               | 2.28                                | 2.24                                    | < 0.1                               | < 0.1                                    |
| Chromium  | 2.22                                | 1.80                                | 1.77                                    | 0.943                               | 1.74                                     |
| Cobalt    | 0.597                               | 0.402                               | 0.393                                   | 0.193                               | 0.319                                    |
| Lead      | 1.15                                | 5.71                                | 5.65                                    | 0.552                               | 0.411                                    |
| Manganese | 2.62                                | 4.37                                | 4.27                                    | 2.15                                | 4.62                                     |
| Nickel    | 3.61                                | 2.46                                | 2.42                                    | 1.75                                | 1.88                                     |
| Selenium  | 37.7                                | 16.7                                | 16.4                                    | 9.00                                | < 0.1                                    |



elementOne 17506 Airtech M29 Report Packet.doc Page 5 of 28

# **Element One Analytical Narrative**

| Client                 | Airtech Environmental Services, Inc. | Element One #   | 17506       |
|------------------------|--------------------------------------|-----------------|-------------|
| Client ID <sup>1</sup> | 3648/Big Rivers Energy               | Analyst:        | KMS         |
| Method                 | Method 29                            | Dates Received. | 10/10/11    |
| Analytes:              | Sb, As, Be, Cd, Cr, Co, Pb, Mn & Ni  | Dates Analyzed. | 10/12-13/11 |

# **Summary of Analysis**

The Method 29 samples were digested, prepared, and analyzed according to Method 29 protocol. Samples were analyzed for metals using a PerkinElmer ELAN 6100 ICP-MS.

# **Detection Limits**

The ICP-MS instrument reporting limits were  $0.25\mu g/L$  for beryllium and  $1.0\mu g/L$  for the other metals.

# Analysis QA/QC

Duplicate analyses relative percent difference (RPD), spike sample recovery and second source calibration verification data are summarized in the Quality Control Section.

\*Ref page 8: The beryllium and cadmium spike recoveries for the back half fraction of Stack R3 was outside of the  $\pm 25\%$  laboratory guidelines with 70% and 74% respectively.

The sample was analyzed at a five-fold dilution resulting in a spike recovery of 81% for beryllium and 83% for cadmium, indicating matrix interference. The sample were non-detect therefore this should have no significant impact on the results.

All other QA/QC data was within the criteria of the method.

# Additional Comments

The reported results have not been corrected for any blank values or spike recovery values. The ICP analysis of the Reagent Blank samples revealed detectable concentrations of metals.

# **QUALITY CONTROL SUMMARY**

elementOne 17506 Airtech M29 Report Packet.doc Page 7 of 28

97.77 4 97925.61

10000

# **Summary of Quality Control Data**

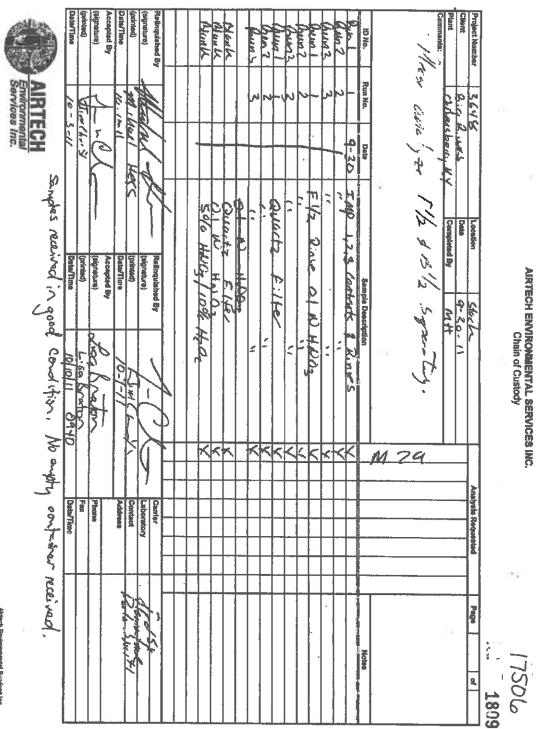
| Metals Du<br>(Method 2 | (Method 29 QC limits: < 20% for RPD) |           |  |  |  |  |  |  |  |  |
|------------------------|--------------------------------------|-----------|--|--|--|--|--|--|--|--|
| ,                      | Stack R2                             | Stack R2  |  |  |  |  |  |  |  |  |
|                        | Front Half                           | Back Half |  |  |  |  |  |  |  |  |
| Element                | RPD                                  | RPD       |  |  |  |  |  |  |  |  |
| Antimony               | 0.7%                                 | 2.1%      |  |  |  |  |  |  |  |  |
| Arsenic                | 0.3%                                 | 1.6%      |  |  |  |  |  |  |  |  |
| Beryllium              | NA                                   | NA        |  |  |  |  |  |  |  |  |
| Cadmium                | 6.4%                                 | 1.8%      |  |  |  |  |  |  |  |  |
| Chromium               | 2.8%                                 | 1.9%      |  |  |  |  |  |  |  |  |
| Cobalt                 | 2.1%                                 | 2.3%      |  |  |  |  |  |  |  |  |
| Lead                   | 2.4%                                 | 1.2%      |  |  |  |  |  |  |  |  |
| Manganese              | 0.6%                                 | 2.4%      |  |  |  |  |  |  |  |  |
| Nickel                 | 0.4%                                 | 1.4%      |  |  |  |  |  |  |  |  |
| Selenium               | 0.7%                                 | 1.9%      |  |  |  |  |  |  |  |  |

# Metals Duplicate Analysis RPD

# **Metals Analysis Spike Recoveries**

| (Method 29 QC limits: ±25% for Spike Recoveries) |            |           |  |  |  |  |  |  |
|--------------------------------------------------|------------|-----------|--|--|--|--|--|--|
|                                                  | Stack R3   | Stack R3  |  |  |  |  |  |  |
|                                                  | Front Half | Back Half |  |  |  |  |  |  |
| Element                                          | Recovery   | Recovery  |  |  |  |  |  |  |
| Antimony                                         | 84%        | 81%       |  |  |  |  |  |  |
| Arsenic                                          | 76%        | 80%       |  |  |  |  |  |  |
| Beryllium                                        | 77%        | *70%      |  |  |  |  |  |  |
| Cadmium                                          | 84%        | *74%      |  |  |  |  |  |  |
| Chromium                                         | 107%       | 99%       |  |  |  |  |  |  |
| Cobalt                                           | 105%       | 98%       |  |  |  |  |  |  |
| Lead                                             | 93%        | 92%       |  |  |  |  |  |  |
| Manganese                                        | 110%       | 99%       |  |  |  |  |  |  |
| Nickel                                           | 94%        | 99%       |  |  |  |  |  |  |
| Selenium                                         | 82%        | 84%       |  |  |  |  |  |  |
| *See Analytical Narrative, page 6.               |            |           |  |  |  |  |  |  |

# **Summary of Quality Control Data**


|           |              |        | Continuing Check S |         |
|-----------|--------------|--------|--------------------|---------|
| Element   | 1 ppb        | 50 ppb | 100 ppb*           | 250 ppb |
| Antimony  | 122%         | 99%    | 102%               | 97%     |
| Arsenic   | 123%         | 93%    | 104%               | 94%     |
| Beryllium | 122%         | 86%    | 102%               | 87%     |
| Cadmium   | 122%         | 99%    | 105%               | 100%    |
| Chromium  | 11 <b>4%</b> | 89%    | 103%               | 90%     |
| Cobalt    | 116%         | 91%    | 107%               | 93%     |
| Lead      | 105%         | 101%   | 104%               | 99%     |
| Manganese | 98%          | 87%    | 110%               | 90%     |
| Nickel    | 88%          | 92%    | 107%               | 92%     |
| Selenium  | 106%         | 89%    | 103%               | 91%     |

# Second Source Calibration Check Recoveries

elementOne 17506 Airtech M29 Report Packet.doc Page 9 of 28

# SAMPLE CUSTODY

elementOne 17506 Airtech M29 Report Packet.doc Page 10 of 28



Artach Environmenial S. vices Iyo, 901A Country Citle Dite Benaenville, IL 60105 Phane: (690) 460-4740, Faic (650) 460 4745 Metallic HAPs will be defined as antimony (Sb), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), manganese (Mn) and nickel (Ni).

# elementOne 17506 Airtech M29 Report Packet.doc Page 12 of 28

# ANALYTICAL DATA

5.0

G (S.)

0000

150

eiementOne 17506 Airtech M29 Report Packet.doc Page 13 of 28

# **Analytical Calculations**

Metals-

Element Results (µg) =ICP Results (µg/L)\*Dilution\*Final Volume (L)

# Where-

ICP Results= Raw sample concentration (ppb)--/CP-Data Sheet

Dilution= <u>Diluted Volume</u>--*ICP-MS Run Sheet* Aliquot

Final Volume=FH=Final Volume (FV)--Sample Submission BH=<u>Received Volume (BV)</u>.\*Final Volume (FV)--Sample Submission Aliquot (Used) Combined Results=FH+BH

# **Analytical Calculations**

# Spike Recovery-

Where-

Spike Result = Raw sample concentration (ppb)--/CP-Data Sheet

Sample Result = Raw sample concentration (ppb)--ICP-Data Sheet

Spike Amount--ICP-MS Spike Table

Duplicate Analysis RPD-

# 

# Where-

Sample Result and Duplicate Results=Raw sample concentration (ppb)--ICP-Data Sheet

Average=(<u>Duplicate + Sample Results</u>) 2

| QA/QC/Report Due Date 10.20         Client Artech Environmental Services, Inc.         Project No       Set48         Project ID       Big Rivers Energy         INO 3 tot 5] ( $D2$ J         Sample Identification         1         Sate: M229-R3         Sate: M229-R3         Sate: M229-R3         Sate: M229-R3         Sate: M229-R3         Sate: M220 ( $Y$ N         PH <= 2.0 ( $Y$ N <td c<="" th=""><th>FH / B</th><th>H Sepa</th><th>rate An</th><th>alysis</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>is Due Da</th><th></th><th></th></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <th>FH / B</th> <th>H Sepa</th> <th>rate An</th> <th>alysis</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>is Due Da</th> <th></th> <th></th> | FH / B      | H Sepa       | rate An  | alysis     |                |                       |           |           |                    |            |            | is Due Da                                                                                                      |      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------|------------|----------------|-----------------------|-----------|-----------|--------------------|------------|------------|----------------------------------------------------------------------------------------------------------------|------|--|
| Project No         3848         Time Rec         0940           Project ID         Big Rivers Energy         Time Rec         0940           Project ID         Big Rivers Energy         Time Rec         0940           Project ID         Big Rivers Energy         Time Rec         0940           HNO <sub>3</sub> Lot:         51/02.5         Ref. Method:         29           Sample Identification         2         Stack-M28-R1         4         Reegent Blank         29           Stack-M28-R2         Stack-M28-R3         Stack-M28-R3         3         Stack-M28-R3 Spike         3         3         Stack-M28-R3 Spike         3           Stack-M28-R3 Spike         Stack-M28-R3 Spike         Stack-M28-R3 Spike         3         1         Stack-M28-R3 Spike         3           Anstrases         Samples 1-4         Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni         PH <2.0 Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               | •           |              |          |            |                |                       |           | 1         | QA/QC              | /Repo      | rt Due Da  | ate 10.                                                                                                        | 20.  |  |
| Project No         3648         Time Rec         0940           Project ID         Big Rivers Energy         HK Lot: 5/08) 2.7         HCI Lot: 5/0735         Ref. Method:           HNO3 Lot:         5/02 2         HF Lot: 5/08) 2.7         HCI Lot: 5/0735         Ref. Method:           Sample Identification         1         Stack-M29-R1         4         Reegent Blank         29           Stack-M29-R2         3         Stack-M29-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client                                                                                                                                                                        | A           | Airtech En   | vironme  | ntal Servi | ces. Inc.      |                       |           |           |                    | Г          | Date Rec   | 10.1                                                                                                           | 10.1 |  |
| Project ID         Big Rivers Energy         Rec by         LLB           HNO3 Lot:         51/02 L         HF Lot:         51/02 S         Ref. Method:         29           Sample Identification         1         Stack-M29-R1         4         Reegent Blank         29           Stack-M29-R2         Stack-M29-R2         Stack-M29-R3         9         9         9           3         Stack-M29-R3         9         9         9         9         9           3         Stack-M29-R3         9         9         9         9         9         9           3         Stack-M29-R3         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                      | Project I                                                                                                                                                                     |             |              |          |            |                |                       |           |           |                    | ŀ          |            |                                                                                                                |      |  |
| Volume Marked Y / M         Volume Loss Y / N / f         29           Sample Identification         1         Stack-M29-R1         4         Reegent Blank         2         2           3         Stack-M29-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project I                                                                                                                                                                     | DE          | Big Alvers   | Energy   |            |                |                       |           |           |                    | F          |            |                                                                                                                |      |  |
| Volume Marked Y / (r)         Volume Loss Y / N / (r)         29           Sample Identification         1         Stack-M29-R1         4         Reegent Blank         2         2           3         Stack-M29-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HNO <sub>3</sub> Lo                                                                                                                                                           | t: 510      | 24           | HF       | Lot: SK    | 18127          |                       | .ot: 5    | 035       |                    |            | Ref        | . Method                                                                                                       | :    |  |
| 1       Stack-M29-R1       4       Reagent Blank         2       Stack-M29-R2 Duplicate       3       Stack-M29-R3 Duplicate         3       Stack-M29-R3 Spike       3         Analyses       Samples 1-4       Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni         Runs /       Fil / Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>9</sub> /10% HgO <sub>2</sub> (BH)       HNO <sub>3</sub> (A)       KMmO <sub>4</sub> (B)         HE       pH <2.0 Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                | -    |  |
| 1       Stack-M29-R1       4       Reagent Blank         2       Stack-M29-R2 Duplicate       3       Stack-M29-R3 Spike         3       Stack-M29-R3 Spike       3         Analyses       Samples 1-4       Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni         Runs /       Fil / Ace (FH)       HNO <sub>5</sub> (Fg)       5% HNO <sub>5</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>5</sub> (A)       KMmO <sub>4</sub> (B)         Runs /       Fil / Ace (FH)       HNO <sub>5</sub> (Fg)       5% HNO <sub>5</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>5</sub> (A)       KMmO <sub>4</sub> (B)       HCl q         Runs /       Fil / Ace (FH)       HNO <sub>5</sub> (Fg)       5% HNO <sub>5</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>5</sub> (A)       KMmO <sub>4</sub> (B)       HCl q         Lab ID       Fil / BV ml       BV ml       FV ml       BV ml                                                                                                                                    | Sample                                                                                                                                                                        | identif     | Ication      |          |            |                |                       |           |           |                    |            |            | •                                                                                                              |      |  |
| 2       Stack-M29-R2       Stack-M29-R2       Stack-M29-R2         3       Stack-M29-R3       Stack-M29-R3       Stack-M29-R3         Analyses       Samples 1-4       Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni         Requested       Stack-M29-R3       Stack-M29-R3         Runs /       Fil / Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>9</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>3</sub> (A)         Runs /       Fil / Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>9</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>3</sub> (A)       KMmO <sub>4</sub> (B)         Runs /       Fil / Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>9</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>3</sub> (A)       KMmO <sub>4</sub> (B)       HCi Q         Runs /       Fil / Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>9</sub> /10% H <sub>2</sub> O <sub>2</sub> (Q/N)       pH <2.0 Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |             |              |          |            | 4              | Reager                | t Blank   |           |                    | ·          |            |                                                                                                                |      |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| Stack-M29-R3 Spike         Samples 1-4         Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni           Requested         Samples 1-4         Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni           Requested         Fil/Ace (FH)         HNO <sub>3</sub> (Fg)         5% HNO <sub>3</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)         HNO <sub>3</sub> (A)         KMmO <sub>4</sub> (B)         HCl Q           Requested         Fil/Ace (FH)         HNO <sub>3</sub> (Fg)         5% HNO <sub>3</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)         HNO <sub>3</sub> (A)         KMmO <sub>4</sub> (B)         HCl Q           Requested         PH <2.0 Y/N         < |                                                                                                                                                                               | Stack-M2    | 29-R2 Dup    | icate    |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| Analyses<br>RequestedSamples 1-4Sb, As, Be, Cd, Cr, Co, Pb, Mn, NiRuns /<br>FBFil/Ace (FH)HNOs (FK)5% HNOs/10% Ho2 (BH)HNOs (A)KMmOs (B)H<2.0 Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                             |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| Requested         Runs / Fil/Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>5</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>5</sub> (A)       KMmO <sub>4</sub> (B)       HCICI         FII /Ace (FH)       HNO <sub>3</sub> (Fg)       5% HNO <sub>5</sub> /10% H <sub>2</sub> O <sub>2</sub> (BH)       HNO <sub>5</sub> (A)       KMmO <sub>4</sub> (B)       HCICI         FII /Ace (FH)       PH <2.0 Y/N       pH        pH        pH mi       PH mi       PH mi       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               | Stack-M2    | 9-R3 Spil    | Ke       |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| Requested       HNO3 (FH)       HNO3 (FH)       S% HNO3/10% HO2 (BH)       HNO3 (A)       KMnO4 (B)       HCIG         FB       pH <2.0 Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyza                                                                                                                                                                       | 8           | Sam          | ples 1-4 |            | Sb, As         | . Be. Cd.             | Cr. Co.   | Pb. Mn. M | NE                 |            |            |                                                                                                                |      |  |
| FB $pH < 2.0$ Y/N </td <td></td>                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| FB $pH < 2.0 \ Y/N$ $pH < 2.0 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                               |             |              |          |            |                | ·                     |           |           |                    |            |            |                                                                                                                |      |  |
| FB $pH < 2.0 \ Y/N$ $pH < 2.0 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                             | Runs /                                                                                                                                                                        | Fil/A       | ce (FH)      | HNO      | s (534)    | 5% HNC         | ) <sub>3</sub> /10% H | O₂ (BH)   | HNC       | D <sub>3</sub> (A) | K          | InO₄ (B)   | НС                                                                                                             |      |  |
| Lab ID       FI ID       BV ml       BV ml       FV ml       BV ml       EV ml       BV ml       FV ml       BV ml       <                                                                                                                                                                                                                                                                                                                                                         | FB                                                                                                                                                                            | pH <2.      | O Y/N        | рН <2,   | OYN        |                |                       |           |           |                    | -          |            |                                                                                                                |      |  |
| 1 $03$ $100$ $540$ $210$ $50$ 2.D $73$ $570$ $285$ $35$ $570$ $285$ 3.S $35$ $570$ $285$ $540$ $270$ $570$ $285$ 3.S $35$ $570$ $285$ $540$ $270$ $50$ 4       C-7       FH       Acetone Blank $640$ $270$ $500$ $1000$ 4       C-7       FH       Acetone Blank $640$ $1000$ $1000$ 4       C-7       FH       Acetone Blank $640$ $1000$ $1000$ 4       C-7       FH       Acetone Blank $600$ $1000$ $1000$ 4       C-7       FH       Acetone Blank $400$ $1000$ $1000$ C-84       A       0.1N HNO3 $205$ $1000$ $10000$ $10000$ C-88       B       D1 Ha0 $2100$ $10000$ $100000$ $100000$ C-10       B $4900000$ $1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab ID                                                                                                                                                                        | FILID       | <b>BV</b> ml |          |            |                |                       |           |           |                    |            |            | the second s | F    |  |
| 2.0 $73$ $570$ $285$ 3.8 $35$ $70$ $285$ M-29 Reagent Blank         Lab ID       Fraction $8V$ , ml       FV, ml       Comments         4       C-7       FH       Acetone Blank $205$ $100$ $400$ C-8A       FH       0.1N HNO3 $205$ $100$ $400$ $100$ mL         C-8A       A       0.1N HNO3 $205$ $100$ $400$ $100$ mL         C-8B       B       D1 Ha0 $220$ $50$ $400$ $100$ mL         C-8B       B       D1 Ha0 $200$ $100$ mL $100$ mL         C-10       B $4\%$ KMm04/10% Ha02 $220$ $50$ $400$ $100$ mL         C-11       C $8N$ HCI DI Ha0 $100$ $100$ mL $100$ mL         C-12-1       FH       Filter $100$ $100$ mL $100$ mL         Lab Communications $100$ mL $250$ m $500$ $500$ $64$ , $700$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                             |             | $\sim$       | 63       | 100        | 540            |                       | 50        |           | $\sim$             |            |            |                                                                                                                |      |  |
| 3.S       3.5 $35$ $740$ $270$ V         M-29 Resgent Blank       Eable in the second blank         Lab ID       Fraction       BV, ml       FV, ml       Comments         4       C-7       FH       Acetone Blank       Comments         -       C-8A       FH       0.1N HNO3       ZO5       Ic0       Use of 100mL         C-8A       A       0.1N HNO3       ZO5       Ic0       Use of 100mL         C-8B       B       DI H <sub>2</sub> O       Communications       Communications         C-10       B       4% KMnO4/10% H <sub>2</sub> O       Communications       Communications         Lab Communications       Z50000       Stot A , B       CO2 1411 - F, B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.D                                                                                                                                                                           |             |              |          |            |                | 285                   |           | $\sim$    | $\sim$             | $\square$  |            | $\sim$                                                                                                         | 1    |  |
| M-29 Reagent BiankLab IDFraction $BV, ml$ $FV, ml$ Comments4C-7FHAcetone Blank $PV, ml$ Comments4C-7FH $Acetone Blank$ $PV, ml$ CommentsC-8AFH0.1N HNO3 $ZO5$ $IQO$ $UScOl$ C-8AA0.1N HNO3 $ZO5$ $IQO$ $UScOl$ C-8BBDI HaO $PV$ $PV$ C-9BH $5\%$ HNO3/10% HaO2 $2ZO$ $SO$ $UScOl$ C-10B $4\%$ KMnO4/10% HaO2 $2ZO$ $SO$ $UScOl$ C-11C8N HCI DI HaO $PV$ $PV$ C-12-1FHFilter $PV$ Lab Communications $PV$ $Z50000$ $Stol$ $A, B$ $(O21Y11 - FV)B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.8                                                                                                                                                                           |             |              | 35       |            |                |                       |           |           | $\sim$             |            |            | $\sim$                                                                                                         | ┝╴   |  |
| Lab ID       Fraction       BV, ml       FV, ml       Comments         4       C-7       FH       Acetone Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M-20 8                                                                                                                                                                        | and and a   | Rienk        |          |            |                |                       |           |           |                    |            |            |                                                                                                                | ·    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |             | HOIN         | Erection | 1          |                | RV/ ml                |           |           |                    |            |            |                                                                                                                |      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               | C-7         | EH           |          | -          |                | DV, III               | FV, III   |           | IMEINS             |            |            |                                                                                                                |      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |             |              |          |            |                | 105                   | 100       |           |                    |            | ,          |                                                                                                                |      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |             |              |          |            |                | Res 1                 | 100       | -148      |                    | <u>oom</u> |            |                                                                                                                |      |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| C-10 B 4% KMnO4/10%HgSO4<br>C-11 C 8N HCI DI HgO<br>C-12-1 FH Filter<br>Lab Communications<br>LEBT 59 KUO W 25000 Std A, B (021411 - A, B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                               |             |              |          |            | H <sub>0</sub> | 220                   | 150       | 1100      | 0 11               | 2-01       |            |                                                                                                                |      |  |
| C-11 C 8N HCI DI H20<br>C-12-1 FH Filter<br>Lab Communications<br>LEBT SAKUOL W/ 25000 Stol A, B (021411 - A, B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                               |             |              | 4% KI    | AnO_/109   | 6HoSO          |                       | $+ \sim$  |           | <u>×. n</u>        | 2111-      |            |                                                                                                                |      |  |
| Lab Communications<br>LeBt SALUCI W 25000 Std A, B (021411 - A, B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               | C-11        | C            |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| LEBT SAKID W 2500 STO A, B (021411-A,B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                               | C-12-1      |              |          |            |                | ·                     |           |           |                    |            |            |                                                                                                                |      |  |
| LEBT SAKID W 25pm Std A, B (021411-A,B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lah Co                                                                                                                                                                        | mmunic      | atione       |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              | -        | 25         | 0000           | <17                   |           | 2 76      | 2111               | 1 - 6      | <u>rp)</u> |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              |          |            | HDIT           | KIS                   |           |           | 2141               |            | <u>49</u>  | ······                                                                                                         |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              |          |            |                |                       |           | ····      |                    |            |            |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            | ( ) ( )    |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             | _            |          |            | · · · · ·      |                       |           | -         |                    |            |            |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               | e           |              |          |            |                |                       |           |           |                    |            |            |                                                                                                                |      |  |
| и I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fractions F                                                                                                                                                                   | leceived: C | 1. C3. C4-   | AB C12.1 | CRs C9-I   | I R 10 10 1    | 1                     |           |           |                    |            |            |                                                                                                                |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                               |             |              |          |            | and the second |                       |           |           |                    |            |            |                                                                                                                |      |  |
| ۲۰۰۰<br>Fractions Received: C1, C3, C4—RB, C12, C8s, C9—U.B 10,10,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS Pare                                                                                                                                                                       | et of 1     |              |          |            | EH :           | Pren Ry/              | Date LI   | S M.0     | .i  .=             | non D.     | Data -     | -                                                                                                              |      |  |
| Fractions Received: C1, C3, C4RB_C12, C8a, C9LLB 10.10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                               | 011 11:40   | MA 80:0      |          |            | BH             | Prep Bv/l             | Date V    | 50.12     |                    |            |            | -                                                                                                              |      |  |
| Fractions Received: C1, C3, C4—RB_C12, C8a, C9—LLB_10.10.11           SS Page1 of 1         FH Prep By/Date (LS [0.12.1]) A Prep By/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |             |              |          |            |                |                       | - and The |           |                    |            |            |                                                                                                                |      |  |
| Fractions Received: C1, C3, C4RB_C12, C8a, C9LLB 10.10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS By_                                                                                                                                                                        | J2B         |              |          |            | BH/            | FH Prep               | By/Date   | LLL VO.I  | D.II CF            | rep By     | /Date -    |                                                                                                                |      |  |

elementOne 17506 Airtech M29 Report Packet.doc Page 16 of 28

De-

# elementOne Method 29 Microwave Worksheet

Client:

| Date Dig               | ested: <u>/0</u> ./2 | -// Initials         | s: <u>Aps</u>                                 | Woi    | ksheet <b>Pre</b> pared i | by: AOS                                     |       |
|------------------------|----------------------|----------------------|-----------------------------------------------|--------|---------------------------|---------------------------------------------|-------|
| Auto<br>Sample<br>Loc. | Sample Lab<br>ID     | Sample<br>Weight (g) | # of filters<br>digested                      | Splike | Prep Volume<br>(ml)       | Weight In<br>Micro /<br>Weight Out<br>Micro | Units |
| 1                      | LRB                  |                      |                                               |        |                           |                                             |       |
| 3                      | LLBT                 |                      |                                               |        |                           |                                             |       |
| 5                      | 17470                | 1525                 |                                               |        | 50                        |                                             |       |
| 7                      | 17506-1              | 3                    |                                               |        |                           |                                             |       |
| 9                      | -2                   |                      |                                               |        |                           |                                             |       |
| . li                   | -3                   |                      |                                               |        |                           |                                             |       |
| 13                     | -4                   |                      |                                               |        |                           |                                             |       |
| 15                     | BIK                  |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        | •                         |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
| <br> <br>              |                      |                      |                                               |        |                           |                                             |       |
| *                      |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
|                        |                      |                      |                                               |        |                           |                                             |       |
| Filt-                  | 15= 154.1            | le mes H             | NOT SI                                        | 074    | 7 puls 1                  | F 5109170                                   |       |
| Totals                 | = 162 6              | MLA ANY              | <u>, , , , , , , , , , , , , , , , , , , </u> | 24     | 2 mls Hel                 | <u>15 5109120</u><br>4110020                |       |
|                        |                      |                      |                                               |        |                           |                                             |       |

Element One, Inc. Form 104 - Revision 1.0

¥.

# Sample/Batch Report

User Name: icp Computer Name: ICP-MS Sample File: C:\elandata\_icp\Sample\x11.sam Report Date/Time: Thursday, October 13, 2011 14:00:24

| A/S Loc. | Batch ID | Sample ID        | Description | Sample Type     | init Quant. | Prep. Vol. | Aliquot Vol. | Diluted Vol. | Solids Ratio |
|----------|----------|------------------|-------------|-----------------|-------------|------------|--------------|--------------|--------------|
| 5        |          | QC Std 2         |             | Sample          |             |            | •            |              |              |
| 303      |          | 17459-4          |             | Sample          |             |            |              |              |              |
| 304      |          | 17459-5          |             | Sample          |             |            |              |              |              |
| 305      | đ        | 17459-5          |             | Duplicate of 3  |             |            |              |              |              |
| 306      |          | 17459-6          |             | Sample          |             |            |              |              |              |
| 307      | \$       | 17459-6          |             | Spike - 1 of 5  |             |            |              |              |              |
| 308      |          | 17459-10         |             | Sample          |             |            |              |              |              |
| 309      |          | 1 <b>7459-11</b> |             | Sample          |             |            |              |              |              |
| 310      | d        | 17459-11         |             | Duplicate of 8  |             |            |              |              |              |
| 311      |          | 17459-12         |             | Sample          |             |            |              |              |              |
| 312      | S 📪      | 17459-12         |             | Spike - 1 of 10 |             |            |              |              |              |
| 313      |          | 17459-16         |             | Sample          |             |            |              |              |              |
| 314      |          | 17459-17         |             | Sample          |             |            |              |              |              |
| 315      | d        | 17459-17         |             | Duplicate of 13 |             |            |              |              |              |
| 316      |          | 17459-18         |             | Sample          |             |            |              |              |              |
| 317      | 8        | 17459-18         |             | Spike - 1 of 15 |             |            |              |              |              |
| 318      |          | 17459-19         |             | Sample          |             |            |              |              |              |
| 319      |          | 17459-20         |             | Sample          |             |            |              |              |              |
| 1        |          | QC Std 1         |             | Sample          |             |            |              |              |              |
| 3        |          | QC Std 4         |             | Sample          |             |            |              |              |              |
| 5        |          | QC Std 2         |             | Sample          |             |            |              |              |              |
| 322      |          | 17463-1          |             | Sample          |             |            |              |              |              |
| 323      |          | 17463-2          |             | Sample          |             |            |              |              |              |
| 234      | đ        | 17463-2          |             | Duplicate of 23 |             |            |              |              |              |
| 325      |          | 17463-3          |             | Sample          |             |            |              |              |              |
| 326      | \$       | 17463-3          |             | Spike - 1 of 25 |             |            |              |              |              |
| 327      |          | 17463-4          |             | Sample          |             |            |              |              |              |
| 1        |          | QC Std 1         |             | Sample          |             |            |              |              |              |
| 3        |          | QC Std 4         |             | Sample          |             |            |              |              |              |
| 5        |          | QC Std 2         | Airlech     | Sample          |             |            |              |              |              |
| 330      |          | 17506-1fh        | Airtech     | Sample          |             |            |              |              |              |
| 331      |          | 17506-2fh        | Airtech     | Sample          |             |            |              |              |              |
| 332      | d        | 17508-2ft        | Airtech     | Duplicate of 32 |             |            |              |              |              |
| 333      |          | 17506-3ft        | Airtech     | Sample          |             |            |              |              |              |
| 334      | 8        | 17506-3fh        | Airtech     | Spike - 1 of 34 |             |            |              |              |              |
| 335      |          | 17506-4fh        | Airtech     | Sample          |             |            |              |              |              |
| 336      |          | LRB              | Airtech     | Sample          |             |            |              |              |              |
| 337      | 8        | LRB              | Airtech     | Spike - 1 of 37 |             |            |              |              |              |
| 338      |          | 17506-1bh        | Airtech     | Sample          |             |            |              |              |              |
| 339      |          | 17508-2bh        | Airtech     | Sample          |             |            |              |              |              |
| 340      | d        | 17506-2bh        | Airtech     | Duplicate of 40 |             |            |              |              |              |
| 341      |          | 17506-3bh        | Airtech     | Sample          |             |            |              |              |              |
| 342      | 8        | 17506-3bh        | Airtech     | Spike - 1 of 42 |             |            |              |              |              |
| 343      |          | 17506-4bh        | Aintech     | Sample          |             |            |              |              |              |
| 1.       |          | QC Std 1         | Airtech     | Sample          |             |            |              |              |              |
| 3        |          | QC Std 4         | Airtech     | Sample          |             |            |              |              |              |
| 5        |          | QC Std 2         |             | Sample          |             |            |              |              |              |
| 103      |          | LRB              |             | Sample          |             |            |              |              |              |
| 104      | x5\$     | LRB              |             | Spike - 3 of 48 |             |            |              |              |              |
|          |          |                  |             |                 |             |            |              |              |              |

Page 1

| 105        | x5         | LRB                  | Sample           |
|------------|------------|----------------------|------------------|
| 106        | x5s        | LRB                  | Spike - 3 of 50  |
| 107        | x5         | 17470-1              | Sample           |
| 108        |            | 17470-2              | Sample           |
| 109        | x5d        | 17470-2              | Duplicate of 53  |
| 110        |            | 17470-3              | Sample           |
| 111        | X56        | 17470-3              | Spike - 3 of 55  |
| 112        | X5         | 17470-4              | Sample           |
| 113        | x5         | 17470-5              | Sample           |
| 114        | x5         | 17470-6              | Sample           |
| 115        | x5s        | 17470-6              | Spike - 3 of 59  |
| 116        | x5         | 17470-7              | Sample           |
| 117        | x5         | 17470-8              | Sample           |
| 118        | xō         | 17470-9              | Sample           |
| 119        |            | 17470-9<br>17470-10  | Spike - 3 of 63  |
| 120<br>121 | ж5<br>x5   |                      | Sample           |
| 122        | жэ<br>ж5   | 17492-1              | Sample           |
| 122        | x5d        | 17492-2<br>17492-2   | Sample           |
| 123        | x50        | 17492-2<br>17492-3   | Duplicate of 67  |
| 124        | xo<br>x5s  | 17492-3              | Sample           |
| 120        | x5         | 17492-4              | Spike - 3 of 69  |
| 127        | x5         | 17492-5              | Sample<br>Sample |
| 128        | x5         | 17501-1              | Sample           |
| 129        | x58        | 14501-1              | Spike - 3 of 73  |
| 130        | Xõ         | LRB                  | Sample           |
| 131        | x5s        | LRB                  | Spike - 3 of 75  |
| 132        | x5         | 17483-1              | Sample           |
| 133        | ~~         | OC Std 1             | Sample           |
| 134        |            | QC Std 4             | Sample           |
| 135        | x50        | 17493-1              | Sample           |
| 136        | 365        | 17494-1              | Sample           |
| 137        | x50        | 17494-1              | Sample           |
| 138        | x5         | 17502-1              | Sample           |
| 139        | x50        | 17502-1              | Sample           |
| 140        | x5         | 17505-1              | Sample           |
| 141        | x5d        | 17505-1              | Sample           |
| 142        | x50        | 17505-1              | Sample           |
| 143        | x50d       | 17505-1              | Sample           |
| 144        | x5         | 17470-1 10           | Sample           |
| 145        | x50        | 17470-1 TC           | Sample           |
| 146        |            | QC Std 1             | Sample           |
| 147        |            | QC Std 4             | Sample           |
| 5          |            | QC Std 2             | Sample           |
| 107        | <b>x</b> 5 | 17470-1              | Sample           |
| 114        | X5         | 17470-6              | Sample           |
| 115        | x5s        | 17470-6              | Spike - 3 of 95  |
| 136        | x5         | 17494-1              | Sample           |
| 137        | x50        | 17494-1              | Sample           |
| 144        | x5         | 17470-1 TO           | Sample           |
| 145        | x50        | 17470-1 TO           | Sample           |
| 401        |            | 17459-6              | Sample           |
| 402        |            | 17459-6              | Spike - 1 of 101 |
| 403        |            | 17459-12             | Sample           |
| 404        | x2s        | 17459-12             | Spike - 1 of 103 |
| 405        |            | 17459-17             | Sample           |
| 406        |            | 17459-17             | Duplicate of 105 |
| 407<br>408 | x2         | 17459-18             | Sample           |
| 408        | A28        | 17459-18<br>QC STD 3 | Spike - 1 of 107 |
| 0          |            | 609103               | Sample           |
|            |            |                      |                  |

# elementOne 17506 Airtech M29 Report Packet.doc Page 19 of 28

| 7     |            | QC STD 5  |         | Sample           |
|-------|------------|-----------|---------|------------------|
| 409   |            | 17463-2   |         | Sample           |
| 410   | d          | 17463-2   |         | Duplicate of 111 |
| 411   | 42         | 17463-3   |         | Sample           |
| 412 ; | <b>(25</b> | 17463-3   |         | Spike - 1 of 113 |
| 6     |            | QC STD 3  |         | Sample           |
| 7     |            | QC STD 5  |         | Sample           |
| 413   | x10        | 17506-1fh | Airtech | Sample           |
| 414 ) | x10        | 17508-2fh | Aintech | Sample           |
| 415   | x10d       | 17508-2fh | Airtech | Duplicate of 118 |
| 416   | x5         | 17508-3fh | Airtech | Sampie           |
| 417   | x58        | 17506-3fh | Airtech | Spike - 1 of 120 |
| 418   |            | 17506-3bh | Airtech | Sample           |
| 419 : | 5          | 17506-3bh | Airtech | Spike - 1 of 122 |
|       |            |           |         |                  |

# **Dataset Report**

User Name: icp Computer Name: ICP-MS Dataset File Path: C:\elandata\_icp\DataSet\101211-3\ Report Date/Time: Thursday, October 13, 2011 14:00:19

Autosampler Position: 4

# The Dataset

| Time                   | Sample ID  | Batch ID | Read Type       | Description | Init. Quant | Prep. Vol. | Aliquot. Vol. | Diluted V |
|------------------------|------------|----------|-----------------|-------------|-------------|------------|---------------|-----------|
| 23:10:15 Wed 12-Oct-11 | Blank      |          | Blank           | •           |             |            |               |           |
| 23:12:03 Wed 12-Oct-11 | Standard 1 |          | Standard #1     |             |             |            |               |           |
| 23:13:50 Wed 12-Oct-11 | Standard 2 |          | Standard #2     |             |             |            |               |           |
| 23:16:17 Wed 12-Oct-11 | Standard 3 |          | Standard #3     |             |             |            |               |           |
| 23:18:08 Wed 12-Oct-11 | QC Std 1   |          | QC Std #1       |             |             |            |               |           |
| 23:19:59 Wed 12-Oct-11 | QC Std 2   |          | QC Std #2       |             |             |            |               |           |
| 23:21:49 Wed 12-Oct-11 | QC Std 3   |          | QC Std #3       |             |             |            |               |           |
| 23:23:41 Wed 12-Oct-11 | QC Std 4   |          | QC Std #4       |             |             |            |               |           |
| 23:25:33 Wed 12-Oct-11 | QC Std 5   |          | QC Std #5       |             |             |            |               |           |
| 23:27:24 Wed 12-Oct-11 | QC Std 7   |          | QC Std #7       |             |             |            |               |           |
| 23:29:38 Wed 12-Oct-11 | QC Std 8   |          | QC Std #8       |             |             |            |               |           |
| 23:31:30 Wed 12-Oct-11 | QC Std 9   |          | QC Std #9       |             |             |            |               |           |
| 23:33:21 Wed 12-Oct-11 | QC Std 10  |          | QC Std #10      |             |             |            |               |           |
| 23:35:13 Wed 12-Oct-11 | QC Std 2   |          | Sample          |             |             |            |               |           |
| 23:37:04 Wed 12-Oct-11 | 17459-4    |          | Sample          |             |             |            |               |           |
| 23:38:55 Wed 12-Oct-11 | 17459-5    |          | Sample          |             |             |            |               |           |
| 23:40:46 Wed 12-Oct-11 | 17459-5    | d        | Duplicate of 16 | 3           |             |            |               |           |
| 23:42:36 Wed 12-Oct-11 | 17459-6    |          | Sample          |             |             |            |               |           |
| 23:44:27 Wed 12-Oct-11 | 17459-6    | s        | Spike - 1 of 18 |             |             |            |               |           |
| 23:46:17 Wed 12-Oct-11 | 17459-10   |          | Sample          |             |             |            |               |           |
| 23:48:08 Wed 12-Oct-11 | 17459-11   |          | Sample          |             |             |            |               |           |
| 23:49:59 Wed 12-Oct-11 | 17459-11   | d        | Duplicate of 21 | 1           |             |            |               |           |
| 23:51:49 Wed 12-Oct-11 | 17459-12   |          | Sample          |             |             |            |               |           |
| 23:53:40 Wed 12-Oct-11 | 17459-12   | 5        | Spike - 1 of 23 |             |             |            |               |           |
| 23:55:32 Wed 12-Oct-11 | QC Std 1   |          | QC Std #1       |             |             |            |               |           |
| 23:57:23 Wed 12-Oct-11 | QC Std 4   |          | QC Std #4       |             |             |            |               |           |
| 23:59:15 Wed 12-Oct-11 | 17459-16   |          | Sample          |             |             |            |               |           |
| 00:01:05 Thu 13-Oct-11 | 17459-17   |          | Sample          |             |             |            |               |           |
| 00:02:56 Thu 13-Oct-11 | 17459-17   | d        | Duplicate of 28 |             |             |            |               |           |
| 00:04:47 Thu 13-Oct-11 | 17459-18   |          | Sample          |             |             |            |               |           |
| 00:06:38 Thu 13-Oct-11 | 17459-18   | S        | Spike - 1 of 30 |             |             |            |               |           |
| 00:08:28 Thu 13-Oct-11 | 17459-19   |          | Sample          |             |             |            |               |           |
| 00:10:19 Thu 13-Oct-11 | 17459-20   |          | Sample          |             |             |            |               |           |
| 00:12:12 Thu 13-Oct-11 | QC Std 1   |          | Sample          |             |             |            |               |           |
| 00:14:03 Thu 13-Oct-11 | QC Std 4   |          | Sample          |             |             |            |               |           |
| 00:15:54 Thu 13-Oct-11 | Blank      |          | Blank           |             |             |            |               |           |
| 00:17:26 Thu 13-Oct-11 | Standard 1 |          | Standard #1     |             |             |            |               |           |
| 00:18:58 Thu 13-Oct-11 | Standard 2 |          | Standard #2     |             |             |            |               |           |
| 00:20:30 Thu 13-Oct-11 | Standard 3 |          | Standard #3     |             |             |            |               |           |
| 00:22:02 Thu 13-Oct-11 | QC Std 2   |          | Sample          |             |             |            |               |           |
| 00:23:35 Thu 13-Oct-11 | QC Std 1   |          | QC Std #1       |             |             |            |               |           |
| 00:25:07 Thu 13-Oct-11 | QC Std 4   |          | QC Std #4       |             |             |            |               |           |
| 00:26:42 Thu 13-Oct-11 | 17463-1    |          | Sample          | i .         |             |            |               |           |
|                        |            |          |                 |             |             |            |               |           |

Page 1

element**One** Analyst:--KMS--

# ICP-MS RUN SHEET 10/13/2011

Job Number:

| A/S Loc.         | Dilution   | Sample ID | Client  | Турө                                  | Weight (g) | Prep Vol (ml) |
|------------------|------------|-----------|---------|---------------------------------------|------------|---------------|
| 5                |            | QC Std 2  | Airtech | Sample                                |            |               |
| 330              |            | 17506-1fh | Airtech | Sample                                |            | 100           |
| 331              |            | 17506-2fh | Airtech | Sample                                |            | 100           |
| 332              | d          | 17506-2fh | Airtech | Duplicate of 32                       |            | 100           |
| 333              |            | 17506-3fh | Airtech | Sample                                |            | 100           |
| 334              | 5          | 17506-3fh | Airtech | Spike - 1 of 34                       |            | 100           |
| 335              |            | 17506-4fh | Airtech | Sample                                |            | 100           |
| 336              |            | LRB       | Airtech | Sample                                |            | 50            |
| 337              | 8          | LRB       | Airtech | Spike - 1 of 37                       |            | 50            |
| 338              |            | 17506-1bh | Airtech | Sample                                |            | 50x2          |
| 339              |            | 17506-2bh | Airtech | Sample                                |            | 50x2          |
| 340              | d          | 17506-2bh | Airtech | Duplicate of 40                       |            | 50x2          |
| 341              |            | 17506-3bh | Airtech | Sample                                |            | 50x2          |
| 342              | 8          | 17506-3bh | Airtech | Spike - 1 of 42                       |            | 50x2          |
| 343              |            | 17506-4bh | Airtech | Sample                                |            | 50x2          |
| 1                |            | QC Std 1  | Airtech | Sample                                |            |               |
| 3                |            | QC Std 4  | Airtech | Sample                                |            |               |
| 6                |            | QC STD 3  |         | Sample                                |            |               |
| 7                |            | QC STD 5  |         | Sample                                |            |               |
| 413<br>414       | x10        | 17506-1fh | Airtech | Sample                                |            | 100           |
|                  | x10        | 17506-2fh | Airtech | Sample                                |            | 100           |
| 415              | x10d       | 17506-2fh | Airtech | Duplicate of 118                      |            | 100           |
| 416              | x5         | 17506-3fh | Airtech | Sample                                |            | 100           |
| 417              | x5s        | 17506-3fh | Airtech | Spike - 1 of 120                      |            | 100           |
| 418<br>419       |            | 17506-3bh | Airtech | Sample                                |            | 50x2          |
| 419              | 5          | 17506-3bh | Airtech | Spike - 1 of 122                      |            | 50x2          |
| Submitted        | for QC by: | Date/T    | lme:    | is lot 021411-ABCD &<br>QC Review By: |            | me of 10mL    |
| km               |            | 10/13/11  |         |                                       |            |               |
| Re-Test R        |            | No:       | Yes:    | Comments:                             | 1012111    | 1350          |
|                  |            |           |         |                                       |            |               |
| Resubmitte<br>by |            | Date/1    | ìme:    | QC Review:                            | By:        | Date/Time:    |

| 00:28:14 Thu 13-Oct-11                           | 17463-2                |           | Sample                                    |
|--------------------------------------------------|------------------------|-----------|-------------------------------------------|
| 00:29:48 Thu 13-Oct-11                           | 17463-2                | d         | Duplicate of 44                           |
| 00:31:22 Thu 13-Oct-11                           | 17463-3                | u         | Sample                                    |
| 00:32:55 Thu 13-Oct-11                           | 17463-3                | 8         | Spike - 1 of 46                           |
| 00:34:27 Thu 13-Oct-11                           | 17463-4                | Ģ         | Sample                                    |
| 00:36:01 Thu 13-Oct-11                           | QC Std 1               |           | Sample                                    |
| 00:37:33 Thu 13-Oct-11                           | QC Std 4               |           | Sample                                    |
| 00:39:05 Thu 13-Oct-11                           | Blank                  |           | Biank                                     |
| 00:41:15 Thu 13-Oct-11                           | Standard 1             |           | Standard #1                               |
| 00:43:24 Thu 13-Oct-11                           | Standard 2             |           | Standard #2                               |
| 00:45:33 Thu 13-Oct-11                           | Standard 3             |           | Standard #3                               |
| 00:47:42 Thu 13-Oct-11                           | QC Std 2               |           | Sample Airtech                            |
| 00:49:53 Thu 13-Oct-11                           | 17506-1fh              |           | Sample Airtech                            |
| 00:52:05 Thu 13-Oct-11                           | QC Std 1               |           | QC Std #1                                 |
| 00:54:14 Thu 13-Oct-11                           | QC Std 4               |           | QC Std #4                                 |
| 00:56:26 Thu 13-Oct-11                           | 17506-2fh              |           | Sample Airtech                            |
| 00:58:35 Thu 13-Oct-11                           | 17506-2fh              | d         | Duplicate of 59 Airtech                   |
| 01:00:44 Thu 13-Oct-11                           | 17506-3fh              |           | Sample Airtech                            |
| 01:02:54 Thu 13-Oct-11                           | 17506-3fh              | 5         | Spike - 1 of 61 Airtech                   |
| 01:05:03 Thu 13-Oct-11                           | 17506-4fh              | 3         | Sample Airtech                            |
| 01:07:12 Thu 13-Oct-11                           | LRB                    |           | Sample Airtech                            |
| 01:09:21 Thu 13-Oct-11                           | LRB                    | S         | Spike - 1 of 64 Airtech                   |
| 01:11:31 Thu 13-Oct-11                           | 17506-1bh              | 3         |                                           |
| 01:13:40 Thu 13-Oct-11                           | 17506-2bh              |           | Sample Airtech<br>Sample Airtech          |
| 01:15:49 Thu 13-Oct-11                           | 17506-2bh              | d         | Duplicate of 67 Airtech                   |
| 01:18:01 Thu 13-Oct-11                           |                        | u         | •                                         |
| 01:20:10 Thu 13-Oct-11                           | QC Std 1<br>QC Std 4   |           | QC Std #1<br>QC Std #4                    |
| 01:22:21 Thu 13-Oct-11                           |                        |           |                                           |
| 01:24:31 Thu 13-Oct-11                           | 17506-3bh<br>17506-3bh | 5         | Sample Airtech<br>Spike - 1 of 71 Airtech |
| 01:26:40 Thu 13-Oct-11                           | 17506-4bh              | ъ         | •                                         |
| 01:28:52 Thu 13-Oct-11                           |                        |           |                                           |
| 01:31:01 Thu 13-Oct-11                           | QC Std 1               |           | Sample Airtech<br>Sample Airtech          |
| 01:33:09 Thu 13-Oct-11                           | QC Std 4               |           | * · · · · · · · · · · · · · · · · ·       |
| 01:35:01 Thu 13-Oct-11                           | Blank<br>Standard 1    |           | Blank<br>Standard #1                      |
| 01:36:52 Thu 13-Oct-11                           | Standard 2             |           | Standard #2                               |
| 01:38:44 Thu 13-Oct-11                           | + + + +                |           |                                           |
| 01:40:36 Thu 13-Oct-11                           | Standard 3             |           | Standard #3                               |
| 01:42:30 Thu 13-Oct-11                           | QC Std 2               | чЕ        | Sample                                    |
| 01:44:22 Thu 13-Oct-11                           | LRB                    | x5<br>x5s | Sample                                    |
| 01:46:13 Thu 13-Oct-11                           | LRB                    |           | Spike - 3 of 81                           |
| 01:48:06 Thu 13-Oct-11                           | LRB                    | x5        | Sample                                    |
| 01:48:06 Thu 13-Oct-11                           | LRB                    | x5s       | Spike - 3 of 83                           |
| 01:50:00 Thu 13-Oct-11<br>01:51:52 Thu 13-Oct-11 | QC Std 1               |           | QC Std #1                                 |
|                                                  | QC Std 4               |           | QC Std #4                                 |
| 01:53:46 Thu 13-Oct-11                           | 17470-1                | x5        | Sample                                    |
| 01:55:38 Thu 13-Oct-11                           | 17470-2                | x5        | Sample                                    |
| 01:57:30 Thu 13-Oct-11                           | 17470-2                | x5d       | Duplicate of 88                           |
| 01:59:22 Thu 13-Oct-11                           | 17470-3                | x5        | Sample                                    |
| 02:01:14 Thu 13-Oct-11                           | 17470-3                | x5s       | Spike - 3 of 90                           |
| 02:03:06 Thu 13-Oct-11                           | 17470-4                | x5        | Sample                                    |
| 02:04:58 Thu 13-Oct-11                           | 17470-5                | x5        | Sample                                    |
| 02:06:49 Thu 13-Oct-11                           | 17470-6                | x5        | Sample                                    |
| 02:08:42 Thu 13-Oct-11                           | 17470-6                | x5s       | Spike - 3 of 94                           |
| 02:10:33 Thu 13-Oct-11                           | 17470-7                | x5        | Sample                                    |
| 02:12:27 Thu 13-Oct-11                           | QC Std 1               |           | QC Std #1                                 |
| 02:14:19 Thu 13-Oct-11                           | QC Std 4               |           | QC Std #4                                 |
| 02:16:13 Thu 13-Oct-11                           | 17470-8                | x5        | Sample                                    |
|                                                  |                        |           |                                           |

# elementOne 17506 Airtech M29 Report Packet.doc Page 23 of 28

| 02:18:05 Thu 13-Oct-11                           | 17470-9             | x5   | Sample          |  |
|--------------------------------------------------|---------------------|------|-----------------|--|
| 02:19:57 Thu 13-Oct-11                           | 17470-9             | x5s  | Spike - 3 of 10 |  |
| 02:21:49 Thu 13-Oct-11                           | 17470-10            | x5   | Sample          |  |
| 02:23:41 Thu 13-Oct-11                           | 17492-1             | x5   | Sample          |  |
| 02:25:33 Thu 13-Oct-11                           | 17492-2             | x5   | Sample          |  |
| 02:27:25 Thu 13-Oct-11                           | 17492-2             | x5d  | Duplicate of 10 |  |
| 02:29:17 Thu 13-Oct-11                           | 17492-3             | x5   | Sample          |  |
| 02:31:09 Thu 13-Oct-11                           | 17492-3             | x5s  | Spike - 3 of 10 |  |
| 02:33:01 Thu 13-Oct-11                           | 17492-4             | x5   | Sample          |  |
| 02:34:55 Thu 13-Oct-11                           | QC Std 1            |      | QC Std #1       |  |
| 02:36:47 Thu 13-Oct-11                           | QC Std 4            |      | QC Std #4       |  |
| 02:38:40 Thu 13-Oct-11                           | 17492-5             | x5   | Sample          |  |
| 02:40:32 Thu 13-Oct-11                           | 17501-1             | x5   | Sample          |  |
| 02:42:24 Thu 13-Oct-11                           | 14501-1             | x5s  | Spike - 3 of 1  |  |
| 02:44:16 Thu 13-Oct-11                           | LRB                 | x5   | Sample          |  |
| 02:46:09 Thu 13-Oct-11                           | LRB                 | x5s  | Spike - 3 of 1  |  |
| 02:48:00 Thu 13-Oct-11                           | 17493-1             | x5   | Sample          |  |
| 02:49:52 Thu 13-Oct-11                           | QC Std 1            |      | Sample          |  |
| 02:51:44 Thu 13-Oct-11                           | QC Std 4            |      | Sample          |  |
| 02:53:36 Thu 13-Oct-11                           | 17493-1             | x50  | Sample          |  |
| 02:55:28 Thu 13-Oct-11                           | 17494-1             | x5   | Sample          |  |
| 02:57:21 Thu 13-Oct-11                           | QC Std 1            |      | QC Std #1       |  |
| 02:59:13 Thu 13-Oct-11                           | QC Std 4            |      | QC Std #4       |  |
| 03:01:06 Thu 13-Oct-11                           | 17494-1             | x50  | Sample          |  |
| 03:02:58 Thu 13-Oct-11                           | 17502-1             | x5   | Sample          |  |
| 03:04:50 Thu 13-Oct-11                           | 17502-1             | x50  | Sample          |  |
| 03:06:41 Thu 13-Oct-11                           | 17505-1             | x5   | Sample          |  |
| 03:08:33 Thu 13-Oct-11                           | 17505-1             | x5d  | Sample          |  |
| 03:10:25 Thu 13-Oct-11                           | 17505-1             | x50  | Sample          |  |
| 03:12:17 Thu 13-Oct-11                           | 17505-1             | x50d | Sample          |  |
| 03:14:09 Thu 13-Oct-11                           | 17470-1             | x5   | Sample          |  |
| 03:16:01 Thu 13-Oct-11                           | 17470-1             | x50  | Remarks.        |  |
| 03:17:52 Thu 13-Oct-11                           | QC Std 1            | 100  | Sample          |  |
| 03:19:47 Thu 13-Oct-11                           | QC Std 1            |      | QC Std #1       |  |
| 03:21:39 Thu 13-Oct-11                           | QC Std 4            |      | QC Std #4       |  |
| 03:23:33 Thu 13-Oct-11                           | QC Std 4            |      |                 |  |
| 03:25:27 Thu 13-Oct-11                           | QC Std 1            |      | Sample          |  |
| 03:27:19 Thu 13-Oct-11                           | QC Std 4            |      | QC Std #1       |  |
| 10:03:01 Thu 13-Oct-11                           |                     |      | QC Std #4       |  |
| 10:04:52 Thu 13-Oct-11                           | Blank<br>Steederd ( |      | Blank           |  |
| 10:06:43 Thu 13-Oct-11                           | Standard 1          |      | Standard #1     |  |
| 10:08:34 Thu 13-Oct-11                           | Standard 2          |      | Standard #2     |  |
| 10:10:25 Thu 13-Oct-11                           | Standard 3          |      | Standard #3     |  |
| 10:12:16 The 13-Oct-11                           | QC Std 1            |      | QC Std #1       |  |
| 10:14:07 Thu 13-Oct-11                           | QC Std 2            |      | QC Std #2       |  |
|                                                  | QC Std 3            |      | QC Std #3       |  |
| 10:15:58 Thu 13-Oct-11<br>10:17:50 Thu 13-Oct-11 | QC Std 4            |      | QC Std #4       |  |
|                                                  | QC Std 5            |      | QC Std #5       |  |
| 10:19:41 Thu 13-Oct-11                           | QC Std 6            |      | QC Std #6       |  |
| 10:21:32 Thu 13-Oct-11                           | QC Std 7            |      | QC Std #7       |  |
| 10:23:25 Thu 13-Oct-11                           | QC Std 9            |      | QC Std #9       |  |
| 10:25:15 Thu 13-Oct-11                           | QC Std 11           |      | QC Std #11      |  |
| 10:27:08 Thu 13-Oct-11                           | QC Std 2            | _    | Sample          |  |
| 10:29:01 Thu 13-Oct-11                           | 17470-1             | x5   | Sample          |  |
| 10:30:54 Thu 13-Oct-11                           | 17470-6             | x5   | Sample          |  |
| 10:32:44 Thu 13-Oct-11                           | 17470-6             | x5s  | Spike - 3 of 15 |  |
| 0:34:37 Thu 13-Oct-11                            | 17494-1             | x5   | Sample          |  |

# elementOne 17506 Airtech M29 Report Packet.doc Page 24 of 28

| 10:36:28 Thu 13-Oct-11                                                     | 17494-1                        | x50             | Sample                               |
|----------------------------------------------------------------------------|--------------------------------|-----------------|--------------------------------------|
| 10:38:20 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 10:40:11 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 11:41:57 Thu 13-Oct-11                                                     | 17470-1 TOT                    | x5              | Sample                               |
| 11:43:48 Thu 13-Oct-11                                                     | 17470-1 TOT                    | x50             | Sample                               |
| 11:45:41 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 11:47:32 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 11:57:35 Thu 13-Oct-11                                                     | 1745 <del>9</del> -6           | x2              | Sample                               |
| 11:59:26 Thu 13-Oct-11                                                     | 17459-6                        | x2s             | Spike - 1 of 16                      |
| 12:01:17 Thu 13-Oct-11                                                     | 17459-12                       | x2              | Sample                               |
| 12:03:07 Thu 13-Oct-11                                                     | 17459-12                       | x2s             | Spike - 1 of 16:                     |
| 12:04:58 Thu 13-Oct-11                                                     | 17459-17                       |                 | Sample                               |
| 12:06:49 Thu 13-Oct-11                                                     | 17459-17                       | d               | Duplicate of 16                      |
| 12:08:39 Thu 13-Oct-11                                                     | 17459-18                       | x2              | Sample                               |
| 12:10:30 Thu 13-Oct-11                                                     | 17459-18                       | x2s             | Spike - 1 of 165                     |
| 12:12:24 Thu 13-Oct-11                                                     | QC STD 3                       |                 | Sample                               |
| 12:13:56 Thu 13-Oct-11                                                     | QC STD 5                       |                 | Sample                               |
| 12:15:29 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 12:17:01 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 12:18:36 Thu 13-Oct-11                                                     | 17463-2                        |                 | Sample                               |
| 12:20:09 Thu 13-Oct-11                                                     | 17463-2                        | d               | Duplicate of 17:                     |
| 12:21:41 Thu 13-Oct-11                                                     | 17463-3                        | x2              | Sample II                            |
| 12:23:13 Thu 13-Oct-11                                                     | 17463-3                        | x2s             | Spike - 1 of 177h                    |
| 12:24:47 Thu 13-Oct-11                                                     | QC STD 3                       |                 | Sample                               |
| 12:26:56 Thu 13-Oct-11                                                     | QC STD 5                       |                 | Sample                               |
| 12:29:07 Thu 13-Oct-11                                                     | 17506-1fh                      | x10             | Sample Airtech                       |
| 12:31:17 Thu 13-Oct-11                                                     | 17506-2fh                      | x10             | Sample Airtech                       |
| 12:33:26 Thu 13-Oct-11                                                     | 17506-2fh                      | x10d            | Duplicate of 18 Airtech              |
| 12:35:35 Thu 13-Oct-11                                                     | 17506-3fh                      | x5              | Sample Airtech                       |
| 12:37:44 Thu 13-Oct-11                                                     | 17506-3fh                      | x5s             | Spike - 1 of 184Airtech              |
| 12:39:56 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 12:42:06 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 12:44:17 Thu 13-Oct-11                                                     | 17506-3bh                      |                 | Sample Airtech                       |
| 12:46:27 Thu 13-Oct-11                                                     | 17506-3bh                      | 5               | Spike - 1 of 186Airtech              |
| 12:48:39 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 12:50:48 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 12:53:39 Thu 13-Oct-11                                                     | 17459-6                        | x5              | Sample                               |
| 12:55:30 Thu 13-Oct-11                                                     | 17459-6                        | x5s             | Spike - 1 of 191                     |
| 12:57:20 Thu 13-Oct-11                                                     | 17459-12                       | x5              | Sample                               |
| 12:59:11 Thu 13-Oct-11                                                     | 17459-12                       | x5s             | Spike - 1 of 194                     |
| 13:01:02 Thu 13-Oct-11                                                     | 17459-18                       | x5              | Sample                               |
| 13:02:52 Thu 13-Oct-11                                                     | 17459-18                       | x5s             | Spike - 1 of 198                     |
| 13:04:45 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 13:06:36 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 13:15:08 Thu 13-Oct-11                                                     | 17506-3fh                      | x10             | Sample Airtech                       |
| 13:17:17 Thu 13-Oct-11                                                     | 17506-3fh                      | x10s            | Spike - 1 of 20(Airtech              |
| 13:19:26 Thu 13-Oct-11                                                     | 17506-3bh                      | x5              | Sample Airtech                       |
| 13:21:36 Thu 13-Oct-11                                                     | 17506-3bh                      | x5s             | Spike - 1 of 202Airtech              |
| 13:23:47 Thu 13-Oct-11                                                     | QC Std 1                       |                 | QC Std #1                            |
| 13:25:57 Thu 13-Oct-11                                                     | QC Std 4                       |                 | QC Std #4                            |
| 13:32:45 Thu 13-Oct-11                                                     | 17506-3fh                      | x10             | Sample Airtech                       |
| 13:34:55 Thu 13-Oct-11                                                     | 17506-3fh                      | x10s            | Spike - 1 of 206Airtech              |
|                                                                            |                                |                 |                                      |
| 13:37:47 Thu 13-Oct-11                                                     | 17459-6                        | ¥5              | Samnie                               |
| 13:37:47 Thu 13-Oct-11<br>13:39:38 Thu 13-Oct-11                           | 17459-6<br>17459-6             | x5<br>x5s       | Sample<br>Spike - 1 of 20            |
| 13:37:47 Thu 13-Oct-11<br>13:39:38 Thu 13-Oct-11<br>13:41:28 Thu 13-Oct-11 | 17459-6<br>17459-6<br>17459-12 | x5<br>x5s<br>x5 | Sample<br>Spike - 1 of 201<br>Sample |

# elementOne 17506 Airtech M29 Report Packet.doc Page 25 of 28

| Tanna        |                    | citre Califican          | Religion Relifiere                 | Smarthurn Dallander | Control I                               |                             |                                     |                          |                                    | ·                         |
|--------------|--------------------|--------------------------|------------------------------------|---------------------|-----------------------------------------|-----------------------------|-------------------------------------|--------------------------|------------------------------------|---------------------------|
| Analyte      | Mass<br>(amu)      | Spike Table 1<br>(Conc.) | Splin Table 1<br>Det. Limit (Conc. | Solve Table 2       | Spike Table 2<br>Det. Linkt (Conc.)     | Genilau Talaha 3<br>(Conci) | Splas Table 3<br>Det. Limit (Conc.) | Spite Table 4<br>(Conc.) | Splin Table 4<br>Out. Link (Conc.) | Optice Table 5<br>(Cont.) |
| Be           | 4410522 S          | -                        | 1 1                                | 25<br>25            |                                         |                             | 1                                   |                          | <u></u>                            | (output)                  |
| 1.5          | 51144 8<br>101.407 |                          | 1                                  | 25<br>25            | 1                                       | 100                         | 1                                   |                          |                                    |                           |
| No.          | 54-021             | 0                        | 1                                  | 25                  | I                                       | 100                         | 4                                   |                          | v                                  |                           |
| 1            | 519 8 \$           | ò                        | 1                                  | 25<br>25            | -                                       | 200<br>100                  | 1                                   |                          |                                    |                           |
| A-           | 74                 |                          | 1                                  | 25<br>25            |                                         |                             | 1                                   |                          |                                    |                           |
| <b>इ</b> त   | £1787 5            | -                        | 1                                  | 25                  |                                         | 100                         | 1                                   |                          | 27                                 |                           |
| <u>.</u>     | 1.4904 S           | D                        | 1                                  | 25                  | 1                                       | 100 C                       | 1                                   |                          | 25                                 |                           |
| 5.0<br>5.0   |                    | D                        | 1                                  | 25<br>25            |                                         | -4                          | 1                                   |                          |                                    |                           |
| 6-17.1<br>** | 4. 977 S<br>(2:441 | 8                        | 1                                  | 25                  | <u>,</u>                                | <b>\$90</b>                 | 1                                   |                          |                                    |                           |
|              |                    |                          |                                    |                     | and |                             |                                     | and and                  |                                    | Town of the last          |
|              |                    |                          |                                    | 幕                   |                                         |                             |                                     |                          |                                    | A STATE                   |

Thursday, Oct 13, 2011 02:00 PM

.

### ICP Standards and QC Standards Values Table

| Element or Test      | Mass       | Symbol          | Std.#1<br>ppb | Std.#2<br>ppb | Std.#3<br>ppb | QC #1 | QC #2  | QC #3      | QC #4      | QC #6<br>A | QC #7<br>AB | QC #8<br>.25 | QC #9<br>LRB | QC #10<br>LRB+ | QC #11<br>LRB+ |
|----------------------|------------|-----------------|---------------|---------------|---------------|-------|--------|------------|------------|------------|-------------|--------------|--------------|----------------|----------------|
| Lithium              | 6          | Ш               |               |               |               | _     |        | -          | -          |            |             |              |              | -              | 1100           |
| Lithium              | 7          | L               | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | D            | 50             | 100            |
| Beryllium            | 8          | Be              | 1             | 100           | 500           | õ     | 1      | 250        | 100        |            |             | 0.25         | õ            | 50             | 100            |
| Boron                | 10         | В               | 1             | 50            | 100           | ō     | 1      | 250        | 100        |            |             | 0.20         | Ď            | 50             | 100            |
| Boron                | 11         | в               | 1             | 50            | 100           | ō     | 1      | 250        | 100        |            |             |              | ŏ            | 50             | 100            |
| Sodium               | 23         | Na              | 20            | 1100          | 5500          | 0     | 21     | 2500       | 1100       |            |             |              | ō            | 718            |                |
| Magnesium            | 24         | Mg              | 20            | 1100          | 5500          | 0     | 21     | 2500       | 1100       |            |             |              | Ō            | 550            |                |
| Magnesium            | 25         | Mg              | 20            | 1100          | 5500          | 0     | 21     | 2500       | 1100       |            |             |              | Ō            | 550            |                |
| Aluminum             | 27         | AI              | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | 0            | 50             | 100            |
| Phosphorus           | 31         | P               | 20            | 1000          | 5000          | 0     | 20     | 2500       | 1000       |            |             |              | 0            | 200            |                |
| Potassium            | 39         | ĸ               | 20            | 1100          | 5500          | 0     | 21     | 2500       | 1100       |            |             |              | 0            | 500            |                |
| Calcium              | 44         | Ca              | 50            | 1100          | 5500          | 0     | 21     | 2500       | 1100       |            |             |              | 0            | 550            |                |
| Scandium             | 45         |                 | 4             |               |               | -     |        |            |            |            |             |              |              |                |                |
| Titanium             | 47         | Ti              | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | 0            | 50             | 100            |
| Titanium<br>Vanadium | 49<br>51   | Tì<br>V         | 1             | 100<br>100    | 500<br>500    | 0     | 1      | 250        | 100        | ~          |             |              | 0            | 50             | 100            |
| Vanadium<br>Vanadium | 51         | v               | 1             | 100           | 500<br>500    | ő     | 1<br>1 | 250<br>250 | 100<br>100 | 0          | 20<br>20    |              | 0            | 50             | 100            |
| Chromium             | 52         | Čr              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        | U          | 10          |              | 0<br>0       | 50             | 100            |
| Chromium             | 53         | Cr              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        |            | 10          |              | 0            | 50<br>50       | 100<br>100     |
| Iron                 | 54         | Fe              | 20            | 1100          | 5500          | ŏ     | 21     | 2500       | 1100       | 0          | 10          |              | o o          | 50             | 100            |
| Manganese            | 55         | Mn              | 1             | 100           | 500           | ō     | 1      | 250        | 100        | ő          | 10          |              | ō            | 50             | 100            |
| iron                 | 57         | Fe              | 20            | 1100          | 6500          | ō     | 21     | 2500       | 1100       | õ          |             |              | õ            | 50             | .00            |
| Cobalt               | 59         | Co              | 1             | 100           | 500           | ō     | 1      | 250        | 100        | õ          | 20          |              | ŏ            | 50             | 100            |
| Nickel               | 60         | Ni              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 20          |              | ō            | 50             | 100            |
| Copper               | 63         | Cu              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | Ō            | 50             | 100            |
| Copper               | 65         | Cu              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Zinc                 | 66         | Zn              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Zinc                 | 67         | Zn              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Zinc                 | 68         | Zn              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Germanium            | 72         | Ge              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | _          |             |              | 0            | 50             | 100            |
| Arsenic              | 75         | As              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Selenium<br>Selenium | 77<br>82   | <i>Se</i><br>Se | 1<br>1        | 100<br>100    | 500<br>500    | 0     | 1<br>1 | 250<br>250 | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Strontium            | 88         | Sr              | i             | 100           | 500           | ŏ     | 1      | 250        | 100<br>100 | 0          | 10          |              | 0            | 50             | 100            |
| Molybdenum           | 95         | Mo              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        | U          |             |              | 0            | 50<br>50       | 100<br>100     |
| Molybdenum           | 97         | Mo              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        |            |             |              | ŏ            | 50             | 100            |
| Molybdenum           | 98         | Mo              | 1             | 100           | 500           | 0     | 1      | 200        | 100        |            |             |              | ō            | 50             | 100            |
| Rhodium              | 103        |                 |               |               |               |       |        |            |            |            |             |              |              |                |                |
| Silver               | 107        | Ag              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Silver               | 109        | Ag              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          | 10          |              | 0            | 50             | 100            |
| Cadmium<br>Cadmium   | 111<br>114 | Cd<br>Cd        | 1             | 100<br>100    | 500<br>500    | 0     | 1<br>1 | 250<br>250 | 100<br>100 | 0          | 5           |              | 0            | 50             | 100            |
| Tin                  | 118        | Sn              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        | 0          | 5           |              | 0            | 50<br>50       | 100            |
| Antimony             | 121        | Sb              | 1             | 100           | 500           | ŏ     | 1      | 250        | 100        | ŏ          |             |              | ŏ            | 50<br>50       | 100<br>100     |
| Antimony             | 123        | Sb              | i             | 100           | 500           | ō     | 1      | 250        | 100        | ŏ          |             |              | ŏ            | 50             | 100            |
| Tellurium            | 128        | Te              | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | õ            | 50             | 100            |
| Cesium               | 133        | -               |               |               |               |       |        |            |            |            |             |              |              |                |                |
| Barlum               | 135        | Ba              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          |             |              | 0            | 50             | 100            |
| Barium<br>Lanthanum  | 137<br>139 | Ba<br>La        | 1             | 100           | 500           | 0     | 1      | 250        | 100        | 0          |             |              | 0            | 50             | 100            |
| Tantalum             | 159        | Та              | 1             | 100<br>100    | 500<br>500    | 0     | 1      | 250<br>250 | 100<br>100 |            |             |              | 0            | 50             | 100            |
| Platinum             | 195        | Pt              | i             | 100           | 500           | D     | 1      | 250        | 100        |            |             |              | 0            | 50<br>50       | 100<br>100     |
| Gold                 | 181        | Au              | 1             | 100           | 500           | ŏ     | i      | 250        | 100        |            |             |              | 0            | 50<br>50       | 100            |
| Thallium             | 205        | TI              | 1             | 100           | 500           | ŏ     | i      | 250        | 100        | 0          |             |              | 0            | 50             | 100            |
| Lead                 | 208        | Pb              | 1             | 100           | 500           | 0     | 1      | 250        | 100        | õ          |             |              | ŏ            | 50             | 100            |
| Bismuth              | 209        | Bi              | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | ō            | 50             | 100            |
| Thorium              | 232        | Th              | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | 0            | 50             | 100            |
| Uranium              | 238        | U               | 1             | 100           | 500           | 0     | 1      | 250        | 100        |            |             |              | 0            | 50             | 100            |
| Krypton              | 83         |                 |               |               |               |       |        |            |            |            |             |              |              |                |                |

elementOne

| I GINILLII |                                                               | 10010      |            | ,                       |                        |               |  |  |  |  |  |
|------------|---------------------------------------------------------------|------------|------------|-------------------------|------------------------|---------------|--|--|--|--|--|
| Sample ID  | Method 6020 & 200.8 Metals Summary Report<br>Sample ID: Blank |            |            |                         |                        |               |  |  |  |  |  |
|            |                                                               | Octobe     | r 13, 2    | 2011 00:39:0            | 5                      |               |  |  |  |  |  |
| Sample De  | escription:<br>tion Results                                   |            |            |                         |                        |               |  |  |  |  |  |
| Concentra  | Analyte                                                       | Mass       |            | Meas. Intens            | Conc. Mea              | Report Linit  |  |  |  |  |  |
| >          | Li                                                            | Maaa       | 6          | 60728.3                 | OULC. NICO             | ppb           |  |  |  |  |  |
| -          | Be                                                            |            | 9          | 26.7                    |                        | ppb           |  |  |  |  |  |
| -          | Sc                                                            |            | 45         | 337065                  |                        | ppb           |  |  |  |  |  |
| ĺ          | Cr                                                            |            | 52         | 11339.4                 |                        | ppb           |  |  |  |  |  |
| Í          | Cr                                                            |            | 53         | 31391.4                 |                        | ppb           |  |  |  |  |  |
|            | Mn                                                            |            | 55         | 6793.9                  |                        | ppb           |  |  |  |  |  |
|            | Co                                                            |            | 59         | 763.7                   |                        | ppb           |  |  |  |  |  |
|            | Ni                                                            |            | 60         | 1623.1                  |                        | ppb           |  |  |  |  |  |
| 1          | As                                                            |            | 75         | -136.9                  |                        | ppb           |  |  |  |  |  |
| Ì          | Se                                                            |            | 77         | 4168.3                  |                        | ppb           |  |  |  |  |  |
|            | Se<br>Rh                                                      |            | 82<br>103  | 11.4<br>836950.4        |                        | ppb           |  |  |  |  |  |
|            | Cđ                                                            |            | 111        | 168,4                   |                        | ppb<br>ppb    |  |  |  |  |  |
| -          | Cd                                                            |            | 114        | 387.4                   |                        | ppb           |  |  |  |  |  |
| -          | Sb                                                            |            | 121        | 588.7                   |                        | ppb           |  |  |  |  |  |
| i          | Sb                                                            |            | 123        | 430.8                   |                        | ppb           |  |  |  |  |  |
| >          | Ho                                                            |            | 165        | 1675707.7               |                        | ppb           |  |  |  |  |  |
| j-         | Pb                                                            |            | 208        | 17731.1                 |                        | ppb           |  |  |  |  |  |
|            | Kr                                                            |            | 83         | 125.3                   |                        | mg/L          |  |  |  |  |  |
|            | 20 & 200.8 <b> </b>                                           |            | Summ       | ary Report              |                        |               |  |  |  |  |  |
|            | : Standard 1                                                  |            |            |                         |                        |               |  |  |  |  |  |
|            |                                                               | Octobe     | r 13, 2    | 2011 00:41:1            | 5                      |               |  |  |  |  |  |
| Sample De  |                                                               |            |            |                         |                        |               |  |  |  |  |  |
| Concentra  | tion Results                                                  | Maga       |            | Mone Intern             | Cone Man               | Depart I Init |  |  |  |  |  |
| 15         | Analyte<br>Li                                                 | Mass       | 6          | Meas. Intens<br>62656.2 | Conc. Wear             | •             |  |  |  |  |  |
| ><br> -    | Be                                                            |            | 9          | 535.3                   | 1.07646                | ppb           |  |  |  |  |  |
| -<br> -    | Sc                                                            |            | 45         | 339403.7                | 1.07040                | ppb           |  |  |  |  |  |
| T<br>T     | Cr                                                            |            | 52         | 24663.4                 | 1.03218                |               |  |  |  |  |  |
|            | Cr                                                            |            | 53         | 33795.1                 | 1.35855                |               |  |  |  |  |  |
| i          | Mn                                                            |            | 55         | 25202.3                 | 0.90854                |               |  |  |  |  |  |
| i          | Co                                                            |            | 59         | 17455.8                 | 1.07059                | ppb           |  |  |  |  |  |
| i          | Ni                                                            |            | 60         | 3890.5                  | 0.68785                |               |  |  |  |  |  |
|            | As                                                            |            | 75         | 2492.7                  | 1.0292                 | ppb           |  |  |  |  |  |
|            | Se                                                            |            | 77         | 4302                    | 0.41383                |               |  |  |  |  |  |
|            | Se                                                            |            | 82         | 273.3                   | 1.0035                 |               |  |  |  |  |  |
| [>         | Rh                                                            |            | 103        | 846897.7                |                        | ppb           |  |  |  |  |  |
|            | Cd                                                            |            | 111        | 3988.4                  | 1.06872                |               |  |  |  |  |  |
| -          | Cd<br>Sb                                                      |            | 114        | 9386.7                  | 1.04656                |               |  |  |  |  |  |
| -          | Sb                                                            |            | 121<br>123 | 13584.1<br>10508.1      | 1,06978                |               |  |  |  |  |  |
| >          | Ho                                                            |            | 125        | 1666450.4               | 1.06966                |               |  |  |  |  |  |
| -          | Pb                                                            |            | 208        | 86096.4                 | 0.95191                | ppb           |  |  |  |  |  |
| 1          | Kr                                                            |            | 83         | -119                    | 0.00101                | mg/L          |  |  |  |  |  |
| Method 60  | 20 & 200.8                                                    | vietais \$ |            |                         |                        |               |  |  |  |  |  |
|            | Standard 2                                                    |            |            |                         |                        |               |  |  |  |  |  |
|            |                                                               |            | r 13, 2    | 011 00:43:24            | 4                      |               |  |  |  |  |  |
| Sample De  |                                                               |            |            |                         |                        |               |  |  |  |  |  |
| Concentrat | ion Results                                                   |            |            |                         |                        |               |  |  |  |  |  |
|            | Analyte                                                       | Mass       |            | Meas. Intens            | Conc. Mear             |               |  |  |  |  |  |
| >          | Li                                                            |            | 6          | 59707.6                 |                        | ppb           |  |  |  |  |  |
| -          | Be                                                            |            | 9          |                         | 104.92954              |               |  |  |  |  |  |
| -          | Sc                                                            |            | 45         | 334080                  | 00 00007               | ppb           |  |  |  |  |  |
|            | Cr                                                            |            | 52         | 1304222.1               | 99.99867               |               |  |  |  |  |  |
|            | Cr<br>Mn                                                      |            | 53<br>55   |                         | 102.98115<br>105.28749 |               |  |  |  |  |  |
|            | Co                                                            |            | 59         |                         | 102.70301              |               |  |  |  |  |  |
| 1          | Ni                                                            |            | 60         | 342504.5                | 103.1513               |               |  |  |  |  |  |
| i          | As                                                            |            | 75         |                         | 101.98128              |               |  |  |  |  |  |
| 1          | Se                                                            |            | 77         |                         | 101.87384              |               |  |  |  |  |  |
| i          | Se                                                            |            | 82         |                         | 105.18107              |               |  |  |  |  |  |
| >          | Rh                                                            |            | 103        | 856245.1                |                        | ppb           |  |  |  |  |  |
| i          | Cd                                                            |            | 111        | 386189.6                | 106.86567              |               |  |  |  |  |  |
| -          | Cd                                                            |            | 114        |                         | 104.34707              |               |  |  |  |  |  |
| -          | Sb                                                            |            | 121        |                         | 103.38239              |               |  |  |  |  |  |
|            | Sb                                                            |            | 123        |                         | 103,66717              | • • .         |  |  |  |  |  |
| >          | Ho                                                            |            | 165        | 1705068.7               | 400 00                 | ppb           |  |  |  |  |  |
| -          | Pb                                                            |            | 208        | 7660348.3               | 103.85415              |               |  |  |  |  |  |
|            | Kr                                                            |            | 83         | -24990.1                |                        | mg/L          |  |  |  |  |  |
|            |                                                               |            |            |                         |                        |               |  |  |  |  |  |

| Method 6020 & 200.8 Metais Summary Report           Sample De Thursday, October 13, 2011 00:45:33           Sample Description:           Analyte         Mass           Manage Description:           Concentration Results           End         9           I         6           D         Li         6           Be         9         1955832         499.01394 ppb           I         Cr         52         680.1687.4         500.0002 ppb           I         Cr         53         705787.7         499.40305 ppb           I         Cr         53         705787.7         499.40305 ppb           I         Cr         53         705787.7         499.40305 ppb           I         Ca         57         165649.4         499.6328 ppb           I         As         75         1156649.4         499.2328 ppb           I         Sa         77         78242.7         499.62873 ppb           I         Cd         111         1616273.3         499.26643 ppb           I         Sb         123         4416633         499.20643 ppb           I         Sb         124         5704661         493.2338 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PerkinElmer   | Perkinelmer elan o tuu igr-wis |          |       |               |            |             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|----------|-------|---------------|------------|-------------|--|--|--|--|
| Sample Da Thursday, October 13, 2011 00:45:33           Sample Description:           Concentration Results           Analyte         Mass         Meas. Intent Conc. Mear Report Unit           I         I         6         51999.3         ppb           I         Be         9         195583.2         499.01394         ppb           I         Sc         453         04941.1         ppb           I         Cr         52         6801867.4         500.0002         ppb           I         Cr         52         6801867.4         500.0002         ppb           I         Min         60         148055.1         499.40305 ppb         1           As         75         1156649.4         499.40305 ppb         1           As         75         1165647.7         ppb         1           Cd         111         161627.3         499.20643 ppb         1           Sb         123         4416633         499.20643 ppb         1           Sb         123         4416633         499.20643 ppb         1           Method 6020 & 200.8         Meas         Meas. Intent Conc. Mear Report Unit           Be         9         524.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method 6020   | & 200.8 M                      | etals Su | ımma  | ary Report    |            |             |  |  |  |  |
| Sample Description:<br>Concentration Results<br>Analyte Mass Meas. Inten: Conc. Mear Report Unit<br> > Li 6 51999.3 ppb<br> - Be 9 195583.2 499.01394 ppb<br> - Cr 52 5601687.4 500.0002 ppb<br> - Cr 55 705787.7 499.40305 ppb<br> - Cr 55 705605.4 499.45926 ppb<br> - Cr 55 705605.4 499.45926 ppb<br> - As 75 115649.4 499.37036 ppb<br> - As 75 115649.4 499.37036 ppb<br> - Se 77 96242.7 499.6264 ppb<br> - Se 77 96242.7 499.6264 ppb<br> - Cd 1114 3892017.6 498.30369 ppb<br> - Cd 1114 3892017.6 498.3038 ppb<br> - Cd 1114 3892017.6 498.3038 ppb<br> - Cd 1114 3892017.6 498.3038 ppb<br> - Sb 123 4418633.3 499.26643 ppb<br> - Sb 123 4418633.3 499.26643 ppb<br> - Bb 206 33725623 499.22927 ppb<br> - Cd 114 3892017.6 498.3238 ppb<br> - Bb 206 33725623 499.22927 ppb<br> - Cd 114 3192017.6 498.3238 ppb<br> - Bb 206 33725623 499.22927 ppb<br> - Cd 114 310920.7 499.22847 ppb<br> - Bb 206 33725623 499.22927 ppb<br> - Cd 114 310920.7 499.22847 ppb<br> - Bb 206 33725623 499.22927 ppb<br> - Cr 53 396232 49.22927 ppb<br> - Cr 52 26941.6 1.13749 ppb<br> - Cr 53 39623.2 4.33827 ppb<br> - Cr 55 309623.2 4.33827 ppb<br> - Cr 55 109.7 1.2176 ppb<br> - Sc 45 1109.6 1.98271 ppb<br> - Cr 55 1097.8 1.16366 ppb<br> - Se 77 477.4 3 1.91675 ppb<br> - Cd 111 4700.8 1.22302 ppb<br> - Cd 111 4700.8 1.22309 ppb<br> - Cd 114 10925.1 1.8211 ppb<br> - Sb 123 1183.26 1.21774 ppb<br> - Cd 114 10925.1 1.8211 ppb<br> - Sb 123 1183.26 1.21774 ppb<br> - Cd 114 4002.8 1.22309 ppb<br> - Cr 52 430849.1 328.58732 ppb<br> - Cr 53 5108.1 323.015097 ppb<br> - Cr 52 430849.1 328.58732 ppb<br> - Cr 53 51240.5 313.0094 ppb<br> - |               |                                |          |       |               |            |             |  |  |  |  |
| Concentration Results:         Analyte         Mass         Meas. Intent Conc. Mear Report Unit           > Li         6         51999.3         ppb           -         Be         9         19558.2         490.01394         ppb           -         Be         9         19558.2         490.01394         ppb           -         Cr         52         5601687.4         500.002 ppb         ppb           -         Cr         53         705787.7         499.49305 ppb         ppb           -         Cr         52         5601687.4         500.002 ppb         ppb           -         Cr         52         5705606.0         499.4526 ppb         ppb           -         Co         59         705606.0         499.5369 ppb         ppb           -         Se         82         117976.8         499.26373 ppb         ppb           -         Rcd         111         1616273.3         499.26643 ppb         ppb           -         Cd         114         3892017.6         499.3038 ppb         ppb           -         Fb         208         3275623         499.22847 ppb         ppb           -         Cd         114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Da T   | hursday, O                     | ctober 1 | 3, 2  | 011 00:45:33  | 3          |             |  |  |  |  |
| Analyte         Mass.         Meas.         Intera Conc.         Mear.         Report Unit           -         Be         195583.2         499.01394         ppb           -         Sc         445         304941.1         ppb           -         Sc         445         304941.1         ppb           -         Cr         52         5801887.4         600.002         pb           -         Cr         52         705787.7         499.40305         ppb           -         Cr         53         705787.7         499.40305         ppb           -         Cr         53         705605.4         499.45326         ppb           -         Cr         53         705605.4         499.45326         ppb           -         Sc         77         96242.7         499.6339         ppb           -         Sc         11797.8         498.92673         ppb           -         Cd         1114         1892017.6         499.2533         ppb           -         Sb         123         416633.3         499.26343         ppb           -         Bb         200         8.3725623         499.22927         ppb <td>Sample Desc</td> <td>ription:</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Desc   | ription:                       |          |       |               |            |             |  |  |  |  |
| □         Li         6         51999.3         ppb           □         Be         9         195583.2         499.01394         ppb           □         Cr         52         5801687.4         500.002         ppb           □         Cr         53         705607.4         498.4288         ppb           □         Co         59         7056050.4         498.4289         ppb           □         Co         59         7056050.4         499.42926         ppb           □         Co         59         7056050.4         499.2035         ppb           □         Se         77         926.22.7         499.52369         ppb           □         Se         77         926.22.7         499.52349         ppb           □         Cd         111         1616273.3         499.26433         ppb           □         Cd         111         1616273.3         499.26433         ppb           □         Cd         114         3892017.6         499.3233         ppb           □         Sb         123         4416633.3         499.2643         ppb           □         Cd         141         30217.0 <td>Concentration</td> <td>n Results</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concentration | n Results                      |          |       |               |            |             |  |  |  |  |
| i         Be         195         19558.2         499.01394         ppb           i         Cr         52         5801687.4         500.002         ppb           i         Cr         53         705787.7         499.40305         ppb           i         Mn         55         705787.7         499.40305         ppb           i         As         75         156649.4         499.45282         ppb           i         As         75         156649.4         499.45282         ppb           i         As         75         156649.4         499.45282         ppb           i         As         75         156649.4         499.63039         ppb           i         Se         77         96242.7         499.62673         ppb           i         Cd         114         3982017.6         499.33049         pb           i         Sb         121         5700460.1         493.2338         ppb           i         Bb         102         100:47:42         Sample Da         Thursday, October 13, 2011 00:47:42           Sample Da         Thursday, October 13, 2011 00:47:42         Sample Da         Thursday, October 13, 2011 00:47:42 <t< td=""><td>A</td><td>nalyte I</td><td>Vass</td><td>N</td><td>Vleas. Intens</td><td>Conc. Mear</td><td>Report Unit</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A             | nalyte I                       | Vass     | N     | Vleas. Intens | Conc. Mear | Report Unit |  |  |  |  |
| Sc         46         304941.1         ppb           Cr         52         5601687.4         500.0002         ppb           Cr         53         705787.7         499.40305         ppb           Co         59         7056050.4         499.45926         ppb           Ni         60         1480554.1         499.40305         ppb           Se         77         5705605.4         499.6284         ppb           Se         77         570469.1         499.6284         ppb           Se         77         570469.1         499.2233         ppb           Cd         111         1616273.3         498.6284         ppb           Sb         122         570469.1         499.2233         ppb           Sb         123         4416833.3         499.2643         ppb           Sample Da         Atoch         165         1654487.7         ppb           Kr         83         -109562.6         mg/L         Method 60202         &200.8         Method 6020         &200.8         Method 6020         &200.7         MpL           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday         Acotber         53313109.6         ppb </td <td> &gt; Li</td> <td>i</td> <td></td> <td>6</td> <td>51999.3</td> <td></td> <td>ppb</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | > Li          | i                              |          | 6     | 51999.3       |            | ppb         |  |  |  |  |
| Cr         52         6801867.4         500.0002         ppb           Mn         55         705787.7         499.40305         ppb           Mn         55         705787.7         499.40305         ppb           Ni         60         1400554.1         499.45926         ppb           As         75         1156649.4         499.60369         ppb           As         75         116649.4         499.60369         ppb           Se         82         11797.6         499.80378         ppb           Cd         111         1616273.3         498.62673         ppb           -         Cd         111         3892017.6         499.30349         ppb           -         Cd         114         3892017.6         499.30349         ppb           -         Cd         114         3892017.6         499.30349         ppb           -         Cd         114         3892017.6         499.2033         ppb           -         Cd         114         39.20297         ppb           Sample D:         CC         63         716.5         ppb           -         CB         9         524.7         1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - B           | e                              |          | 9     | 195583.2      | 499.01394  | ppb         |  |  |  |  |
| Cr         53         705787.7         499.4305         ppb           Mn         55         9127285.1         498.4326         ppb           Co         59         705605.4         499.4526         ppb           As         75         115649.4         499.8038         ppb           As         75         115649.4         499.8038         ppb           Se         82         117978.8         499.9207.7         ppb           Cd         111         1616273.3         498.2373         ppb           -         Cd         114         3892017.6         499.3049         ppb           -         Sb         123         4416833.3         499.2643         ppb           -         Sb         123         5700460.1         499.20233         ppb           -         Ho         165         1564487.7         ppb           -         Rb         2011         00:47:42         Sample D: QC Std 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - S           | ic .                           |          | 45    | 304941.1      |            | ppb         |  |  |  |  |
| Mn         55         9127285.1         498.49268 ppb           NI         60         1480554.1         499.37036 ppb           As         75         1156649.4         499.37036 ppb           Se         75         115649.4         499.37036 ppb           Se         82         117976.8         499.37336 ppb           Cd         1111         161273.3         498.62673 ppb           Cd         1114         3892017.6         499.32338 ppb           Sb         123         4418633.3         499.26643 ppb           Sb         123         4418633.3         499.2667           Sb         123         4418633.3         499.2666           Smple Da         Thursday, October 13, 2011 00:47:42         Sample Da         Nu           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da         Pb         206           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da         Pb         206           Cr         52         26941.6         1.13749 ppb         11           Cr         52         26941.6         1.13749 ppb         14           Cr         52         26941.6         1.13749 ppb         16           Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i c           | r                              |          | 52    | 5801687.4     | 500.0002   | ppb         |  |  |  |  |
| Co         59         7066060.4         499.43622         ppb           As         75         1166649.4         499.63369         pb           Se         77         96242.7         499.62369         pb           Se         82         117976.8         499.63369         pb           Cd         111         1616273.3         498.62378         ppb           Cd         111         1616273.3         498.62673         ppb           Cd         114         892017.6         499.13049         pb           Cd         114         161633.3         499.2643         pb           P         Cd         132         4418633.3         499.2643         pb           P         Ho         165         1564487.7         pb         mg/L           Method 6020 & 200 8 Metals Summary Report         Sample De Airtech         Concentration Results         Gottal         1.2176           Concentration Results         Mass         Meas. IntensConc. Mear Report Unit         Pb         Li         6         54716.5         ppb           Cr         52         26941.6         1.13749         pb         1.6336         pb           Cr         53         313109.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i c           | r                              |          | 53    | 705787.7      | 499.40305  | ppb         |  |  |  |  |
| Ni         60         1480554.1         499.60369         ppb           As         75         1156649.4         499.60369         ppb           Se         75         1156649.4         499.60369         ppb           Se         77         96242.7         499.62647         ppb           Cd         1114         1616273.3         496.62673         ppb           Cd         114         3892017.6         499.12338         ppb           Sb         123         4418633.3         499.22643         ppb           Sb         123         4418633.3         499.22647         ppb           Sb         123         4418633.3         499.22647         ppb           Sc         443         33725623         499.22927         ppb           Kr         63         -109562.6         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 14, 1398231         Ppb <td< td=""><td>j N</td><td>1n</td><td></td><td>55</td><td>9127285.1</td><td>498.94268</td><td>ppb</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | j N           | 1n                             |          | 55    | 9127285.1     | 498.94268  | ppb         |  |  |  |  |
| As         76         1166449.4         499.6364         ppb           Se         77         96242.7         499.6264         ppb           Se         82         117976.8         989.6373         ppb           Cd         111         1618273.3         498.62673         ppb           Cd         114         8920176.4         499.13044         ppb           Cd         114         8920176.4         499.13044         ppb           Cd         114         1618273.3         499.26643         ppb           Cd         114         18920176.4         499.13044         ppb           Sb         123         4416633.3         499.26643         ppb           F         H0         165         1564487.7         ppb           Kr         83         -109662.6         mg/L           Sample De Airtech         Concort.410.0147:42         Sample De Airtech         Pob           Concontration Results         Mass         Meas. Intent Conc. Mear Report Unit           P         Li         6         54716.5         ppb           Cr         53         39623.2         4.3827         ppb           Cr         53         39623.2 </td <td>j C</td> <td>0</td> <td></td> <td>59</td> <td>7056050.4</td> <td>499.45926</td> <td>ppb</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | j C           | 0                              |          | 59    | 7056050.4     | 499.45926  | ppb         |  |  |  |  |
| Se         77         96242.7         498.264 ppb           Se         82         117976.8         498.96378 ppb           Rh         103         768046.7         ppb           Cd         111         1616273.3         498.62673 ppb           Sb         123         4418633.3         499.2338 ppb           Sb         123         4418633.3         499.22927 ppb           Kr         83         -109662.6         mg/L           Method 6020 & 200.8         Metals Summary Report         Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Airtech         Concentration Results         ppb           Cr         52         26941.6         1.13749 pp0         Cr         52         26941.6         1.13749 pp0           Cr         52         26941.6         1.13749 pp0         Cr         53         39623.2         4.33827 ppb           Mn         55         27631.8         0.98231 ppb         Co         59         19577.8         1.6386 ppb           Ni         60         4670.2         0.87748 ppb         Se         77         4774.3         1.91575 ppb           As<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) N           | li                             |          | 60    | 1480554.1     | 499.37036  | ppb         |  |  |  |  |
| Se         82         117976.8         498.96378         ppb           Cd         111         161273.3         498.26379         pb           Cd         114         3892017.6         499.13049         ppb           Sb         121         5700469.1         499.32338         ppb           Sb         121         5700469.1         499.26333         ppb           Sb         123         4418633.3         499.26433         pb           Sb         123         4418633.3         499.26927         pb           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:47:42           Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Airtech         Concentration Results         Ppb           Concentration Results         Analyte         Mass         Meas. Intent Conc. Mear Report Unit           P         Li         6         54716.5         ppb           Cr         52         26941.6         1.13749         ppb           Cr         53         39623.2         4.33827         pb           Mn         55         27631.8         0.98231         ppb           Ni         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) A           | 5                              |          | 75    | 1156649.4     | 499.60369  | ppb         |  |  |  |  |
| ▷         Rh         103         768046.7         ppb           □         Cd         111         1618273.3         498.62673         ppb           □         Cd         114         380217.6         499.13049         pbb           □         Sb         121         5700469.1         499.13049         pbb           □         Ho         165         156448.7         ppb           □         Ho         165         156448.7         ppb           □         Ho         165         156448.7         ppb           Sample D2         Austockettal Summary Report         Sample Da Thursday, October 13, 2011 00:47:42         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airdech         Conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) S           | e                              |          | 77    | 96242.7       | 499.6264   | ppb         |  |  |  |  |
| Cd         111         1616273.3         498.62673         ppb           -         Cd         114         3892017.6         499.13049         ppb           -         Sb         123         4418633.3         499.26643         ppb           -         Nb         123         4418633.3         499.22827         ppb           -         Pb         208         33725623         499.22927         ppb           Kr         63         -109562.6         mg/L         Method 6020 & 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S             | e                              |          | 82    | 117976.8      | 498.96378  | ppb         |  |  |  |  |
| -         Cd         114         3892017.6         499.13049         ppb           -         Sb         121         5700469.1         499.32338         ppb           -         Sb         123         44186333         499.26643         ppb           -         Pb         208         33725623         499.22927         ppb           Kr         83         -109562.6         mg/L           Sample De Thursday, October 13, 2011 00:47:42         Sample De Airtech         Ppb           Concentration Results         Meas. Intens Conc. Mear Report Unit           -         Li         6         54716.5         ppb           -         Sc         45         313109.6         ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749         ppb           -         Co         59         19577.8 <t< td=""><td> &gt; R</td><td>h</td><td>1</td><td>03</td><td>768046.7</td><td></td><td>ppb</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > R           | h                              | 1        | 03    | 768046.7      |            | ppb         |  |  |  |  |
| -         Sb         121         5700469.1         499.32338         ppb           -         Nb         123         441863.3         499.26643         ppb           -         Pb         208         33725623         499.22927         ppb           Kr         83         -109562.6         mg/L         Method 6020 & 200.8         Method 5020 & 200.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C             | d                              | 1        | 11    | 1616273.3     | 498.62673  | ppb         |  |  |  |  |
| Sb         123         4418633.3         499.26643         ppb           I>         Ho         165         1564487.7         ppb           I-         Pb         208         33725623         499.22927         ppb           Method 6020 & 200.8 Metals Summary Report         Sample ID: QC Std 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - C           | d                              | 1        | 14    | 3892017.6     | 499.13049  | ppb         |  |  |  |  |
| No         165         1564487.7         ppb           Pb         208         33725623         499.22927         ppb           Kr         83         -109562.6         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample De Airtech         -           Concentration Results         Analyte         Mass         Meas. Intens Conc. Mear Report Unit           Concentration Results         Analyte         Mass         Meas. Intens Conc. Mear Report Unit           Cr         52         26941.6         1.13749         ppb           Co         59         19577.8         1.6866         ppb           Ni         60         4670.2         0.8748         ppb           Se         77         4774.3         1.91575         ppb           Se         82         298.8         1.062         ppb           Co         111         4700.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - S           | b                              | 1        | 21    | 5700469.1     | 499.32338  | ppb         |  |  |  |  |
| I         Pb         208         33725623         499.22927         ppb           Kr         83         -109562.6         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample De Thursday, October 13, 2011 00:47:42         Sample De Thursday, October 13, 2011 00:47:42           Sample De Airtech         Concentration Results         Meas. Intens Conc. Mear Report Unit           I         Li         6         54716.5         ppb           -         Sc         45         313109.6         ppb           -         Sc         45         313109.6         ppb           -         Sc         45         313109.6         ppb           -         Sc         45         31320.8         ppb           -         Cr         53         39823.2         4.33827         ppb           -         Cr         53         39823.2         4.33827         ppb           -         Co         59         19577.8         1.16386         ppb           -         As         75         3108.1         1.23022         ppb           -         Se         77         4774.3         1.91575         ppb           -         Se         123 <td>S</td> <td>b</td> <td>1</td> <td>23</td> <td>4418633.3</td> <td>499.26643</td> <td>ppb</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S             | b                              | 1        | 23    | 4418633.3     | 499.26643  | ppb         |  |  |  |  |
| I         Pb         208         33725623         499.22927         ppb           Kr         83         -109562.6         mg/L           Method 6020 & 200.8         Metals Summary Report           Sample Da Thursday, October 13, 2011 00:47:42           Sample Da Alitech           Concentration Results           Analyte         Mass         Meas. Intent Conc. Mear Report Unit           I         6         54716.5         ppb           I         8         9         524.7         1.2176           I         8         9         524.7         1.2178           I         Cr         52         26941.6         1.13749           I         Cr         53         39623.2         4.3827           I         Mn         55         27631.8         0.98231           I         Mn         55         27631.8         0.98231           I         As         75         3108.1         1.23022         pb           As         75         3108.1         1.23022         pb           I         Se         82         298.8         1.062         pb           I         Se         82         2115314.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | і> н          | 0                              | 1        | 65    | 1564487.7     |            | ddd         |  |  |  |  |
| Kr         63         -109562.6         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample ID: QC Std 2           Sample De Airtech         Concentration Results           Analyte         Mass         Meas. Inten: Conc. Mear Report Unit            >         Li         6         54716.5         ppb            -         Be         9         524.7         1.2176 ppb            -         Be         9         524.7         1.2176 ppb            -         Sc         45         313109.6         ppb            -         Cr         52         26941.6         1.13749 pbb            -         Cr         53         39623.2         4.3827 ppb            -         Co         59         19577.8         1.16386 ppb            -         Co         59         19577.8         1.16386 ppb            -         As         75         3108.1         1.2022 ppb            -         Se         77         4774.3         1.91575 ppb            -         Se         77         4774.3         1.21302 ppb            -         Cd         114         4700.8         1.22309 ppb            -         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j- P          | b                              | 2        | 80    | 33725623      | 499.22927  |             |  |  |  |  |
| Method 6020 & 200.8 Metals Summary Report           Sample D: QC Std 2           Sample Da Thursday, October 13, 2011 00:47:42           Sample De Airtech           Concentration Results           Analyte         Mass         Meas. Intens Conc. Mear Report Unit            >         Li         6         54716.5         ppb            -         Be         9         524.7         1.2176 ppb            -         Sc         4.5         313109.6         ppb            -         Cr         52         26941.6         1.13749 ppb            -         Cr         53         39623.2         4.38827 ppb            -         Mn         55         27631.8         0.98231 ppb            -         Co         59         19577.8         1.16386 ppb            -         Ni         60         4670.2         0.87748 ppb            -         Se         77         4774.3         1.91575 ppb            -         Se         82         298.8         1.062 ppb            -         Sb         121         15314.6         1.21774 ppb            -         Sb         123         11832.6         1.21774 ppb            - </td <td><u>́</u>к</td> <td>r</td> <td></td> <td>83</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>́</u> к    | r                              |          | 83    |               |            |             |  |  |  |  |
| Sample D: QC Std 2         Sample Da Thursday, October 13, 2011 00:47:42         Sample De Airtech         Concentration Results         Analyte       Mass         Mass       Meas. Inten: Conc. Mear Report Unit         -       Li       6         -       Be       9         -       Sc       45         -       Sc       45         -       Cr       52         -       Cr       52         -       Cr       53         -       Cr       53         -       Cr       53         -       Cr       53         -       Co       59         -       Co       59         -       Co       59         -       Se       77         -       As       75         -       Se       77         -       Cd       111         -       Se       77         -       Se       1.22309         -       Cd       114       10925.1         -       Cd       114       10925.1         -       Sb       123       1183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method 6020   | & 200.8 M                      | etals Su | mma   | arv Report    |            | 0           |  |  |  |  |
| Sample Da Thursday, October 13, 2011 00:47:42           Sample De Airtech           Concentration Results           Analyte         Mass         Meas. Intent Conc. Mear Report Unit           >         Li         6         54716.5         ppb           -         Be         9         524.7         1.2176         ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749         ppb           -         Cr         53         39623.2         4.3827         ppb           -         Cr         53         39623.2         4.33827         ppb           -         Co         59         19577.8         1.16386         ppb           -         Co         59         19577.8         1.16386         ppb           -         Se         75         3108.1         1.23022         ppb           -         Se         82         296.8         1.062         ppb           -         Se         82         296.8         1.23022         ppb           -         Cd         114         4700.8         1.2309         ppb <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                |          |       |               |            |             |  |  |  |  |
| Sample De Airtech         Analyte         Mass         Meas. Inten: Conc. Mear Report Unit           > Li         6         54716.5         ppb           -         Be         9         524.7         1.2176 ppb           -         Sc         45         313109.6         ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749 ppb           -         Cr         53         39623.2         4.38827 ppb           -         Cd         1477.8         0.98231 ppb         1           -         Co         59         19577.8         1.16386 ppb           -         Se         77         4774.3         1.91575 ppb           -         Se         82         298.8         1.062 ppb           -         Cd         114         4700.8         1.22309 ppb           -         Cd         114         10925.1 <td></td> <td></td> <td>ctober 1</td> <td>3, 20</td> <td>011 00:47:42</td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                | ctober 1 | 3, 20 | 011 00:47:42  | 2          |             |  |  |  |  |
| Concentration Results         Analyte         Mass         Meas. Intens Conc. Mear Report Unit           >         Li         6         54716.5         ppb           -         Be         9         524.7         1.2176 ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749 ppb           -         Cr         53         39623.2         4.33827 ppb           -         Cr         53         39623.2         4.33827 ppb           -         Co         59         19577.8         1.16386 ppb           -         Co         59         19577.8         1.6386 ppb           -         Ass         75         3108.1         1.23022 ppb           -         Se         77         4774.3         1.91575 ppb           -         Se         82         288.8         1.062 ppb           -         Cd         1114         4700.8         1.22309 ppb           -         Cd         114         10925.1         1.18211 ppb           -         Sb         123         11832.6         1.21774 ppb           -         Sb         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                |          | -,    |               | -          |             |  |  |  |  |
| Analyte         Mass         Meas. Intens Conc. Mear Report Unit           >         Li         6         54716.5         ppb           -         Be         9         524.7         1.2176 ppb           -         Sc         45         31309.6         ppb           -         Cr         52         26941.6         1.13749 ppb           -         Cr         52         26941.6         1.13749 ppb           -         Cr         53         39623.2         4.33827 ppb           -         Mn         55         27631.8         0.98231 ppb           -         Co         59         19577.8         1.16386 ppb           -         As         75         3108.1         1.23022 ppb           -         Se         77         4774.3         1.91575 ppb           -         Se         82         298.8         1.062 ppb           -         Cd         111         4700.8         1.22309 ppb           -         Cd         114         10925.1         1.8211 ppb           -         Sb         121         15314.6         1.21774 ppb           -         Kr         83         -114.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                |          |       |               |            |             |  |  |  |  |
| ▷         Li         6         54716.5         ppb           -         Be         9         524.7         1.2176         ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749         ppb           -         Cr         53         39623.2         4.33827         ppb           -         Co         59         19577.8         1.16386         ppb           -         As         75         3108.1         1.23022         ppb           -         Se         82         298.8         1.062         ppb           -         Cd         114         10925.1         1.18211         ppb           -         Sb         123         11832.6         1.21774         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                | Mass     | N     | leas. Intens  | Conc. Mear | Report Unit |  |  |  |  |
| -         Be         9         524.7         1.2176 ppb           -         Sc         45         313109.6         ppb           -         Cr         52         26941.6         1.13749 ppb           -         Cr         53         39623.2         4.33827 ppb           -         Mn         55         27631.8         0.98231 ppb           -         Co         59         19577.8         1.16366 ppb           -         Ni         60         4670.2         0.87748 ppb           -         Se         77         4774.3         1.91575 ppb           -         Se         82         298.8         1.062 ppb           -         Cd         114         4700.8         1.22309 ppb           -         Cd         114         4700.8         1.22309 ppb           -         Cd         114         10925.1         1.18211 ppb           -         Sb         123         11832.6         1.21774 ppb           -         Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da         Thursday, October 13, 2011 00:49:53           Sample Da Thursday, October 13, 2011 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                | 1000     |       |               |            |             |  |  |  |  |
| -       Sc       45       313109.6       ppb         Cr       52       26941.6       1.13749       ppb         Cr       53       39623.2       4.33827       ppb         Mn       55       27631.8       0.98231       ppb         Co       59       19577.8       1.18386       ppb         Ni       60       4670.2       0.87748       ppb         As       75       3108.1       1.23022       ppb         Se       74774.3       1.91575       ppb         Se       74774.3       1.91575       ppb         Se       77       4774.3       1.91575       ppb         Cd       114       4700.8       1.23029       ppb         -       Cd       114       10925.1       1.8211       ppb         -       Cd       114       10925.1       1.8211       ppb         -       Sb       123       11832.6       1.21774       ppb         -       Sb       123       11832.6       1.21774       ppb         -       Ho       165       1657472.3       ppb         -       Rb       208       92521.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -             |                                |          |       |               | 1 2176     |             |  |  |  |  |
| Cr         52         26941.6         1.13749 ppb           Cr         53         39623.2         4.33827 ppb           Mn         55         27631.8         0.98231 ppb           Co         59         19577.8         1.16386 ppb           Ni         60         4670.2         0.87748 ppb           As         75         3108.1         1.23022 ppb           Se         77         4774.3         1.91575 ppb           Se         82         298.8         1.062 ppb           Cd         111         4700.8         1.22309 ppb           Cd         114         10925.1         1.18211 ppb           Cd         114         10925.1         1.18211 ppb           Sb         123         11832.6         1.21774 ppb           Sb         123         11832.6         1.21774 ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airtech           Concentration Results         Meas. Intens Conc. Mear Report Unit         Pb           Li         6         78690.2         ppb           Cr         53         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             |                                |          |       |               | 1.2110     |             |  |  |  |  |
| Cr         53         39623.2         4.33827 ppb           Mn         55         27631.8         0.98231 ppb           Co         59         19577.8         1.16386 ppb           Ni         60         4670.2         0.87748 ppb           As         75         3108.1         1.23022 ppb           Se         77         4774.3         1.91575 ppb           Se         82         298.8         1.062 ppb           Cd         111         4700.8         1.2309 pb           Cd         114         10925.1         1.18211 ppb           Cd         114         10925.1         1.18211 ppb           Sb         121         15314.6         1.21979 ppb           Sb         123         11832.6         1.21774 ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Airtech         Concentration Results           Sample De Airtech         Sample Da Airtech         Sample Da Site 519081.9         ppb           Cr         52         4308498.1         328.58732 ppb         Sec           Cr         53         512460.5         313.80984 ppb         Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                |          |       |               | 1 13749    |             |  |  |  |  |
| Mn         55         27631.8         0.98231 ppb           Co         59         19577.8         1.16386 ppb           Ni         60         4670.2         0.87748 ppb           As         75         3108.1         1.23022 ppb           Se         77         4774.3         1.91575 ppb           Se         82         298.8         1.062 ppb           Cd         111         4700.8         1.22309 ppb           Cd         114         10925.1         1.18211 ppb           Cd         114         10925.1         1.18211 ppb           Sb         123         11832.6         1.21774 ppb           Sb         123         11832.6         1.21774 ppb           Ho         165         1657472.3         ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53           Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Starder         ppb           Cr         519081.9         ppb           Cr         52         4308498.1         328:58732 ppb           Cr         53 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                |          |       |               |            |             |  |  |  |  |
| Co         59         19577.8         1.16386 ppb           Ni         60         4670.2         0.87748 ppb           As         75         3108.1         1.23022 ppb           Se         77         4774.3         1.91575 ppb           Se         72         298.8         1.062 ppb           Cd         111         4700.8         1.22309 ppb           Cd         114         10925.1         1.18211 ppb           Sb         121         15314.6         1.21979 ppb           Sb         123         11832.6         1.21774 ppb           Ho         165         1657472.3         ppb           Kr         83         -114.7         mg/L           Method 60020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53           Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53           Concentration Results         Meas         Intens Conc. Mear Report Unit           P         Li         6         78690.2         ppb           Cr         52         4308498.1         328.58732 ppb           Cr         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                |          |       |               |            |             |  |  |  |  |
| Ni         60         4670.2         0.87748 ppb           As         75         3108.1         1.23022 ppb           Se         77         4774.3         1.91575 ppb           Se         82         298.8         1.062 ppb           Rh         103         877299.1         ppb           Cd         111         4700.8         1.22309 ppb           -         Cd         114         10925.1         1.18211 ppb           -         Sb         121         15314.6         1.21979 ppb           -         Sb         123         11832.6         1.21774 ppb           -         Sb         123         11832.6         1.21774 ppb           -         Sb         123         11832.6         1.21774 ppb           -         No         165         1657472.3         ppb           -         Pb         208         92521.7         1.04917 ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53           Sample Da Airtech         Concentration Results         Mas         7563681.3         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                |          |       |               |            |             |  |  |  |  |
| As       75       3108.1       1.23022 ppb         Se       77       4774.3       1.91575 ppb         Se       82       298.8       1.062 ppb         Rh       103       877299.1       ppb         Cd       111       4700.8       1.2309 ppb         -       Cd       114       10925.1       1.18211 ppb         -       Sb       121       15314.6       1.21979 ppb         -       Sb       123       11832.6       1.21774 ppb         -       Sb       123       11832.6       1.21774 ppb         -       Pb       208       92521.7       1.04917 ppb         Kr       83       -114.7       mg/L         Method 6020 & 200.8 Metals Summary Report       Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Artech       Concentration Results         Mainet Mass       Meas. Intens Conc. Mear Report Unit       Pb         -       Be       9       123.3       0.15087 ppb         -       Sc       45       519081.9       ppb         -       Sc       45       519081.9       pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,             |                                |          |       |               |            | • •         |  |  |  |  |
| Se         77         4774.3         1.91575         ppb           Se         82         298.8         1.062         ppb           Cd         111         4700.8         1.22309         ppb           Cd         114         10925.1         1.18211         ppb           Cd         114         10925.1         1.18211         ppb           Sb         123         11832.6         1.21774         ppb           Bb         123         11832.6         1.21774         ppb           Ho         165         1657472.3         ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8         Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Athech           Concentration Results         Meas         Intens Conc. Mear Report Unit           Li         6         78690.2         ppb           -         Be         9         123.3         0.15087           Cr         52         4308498.1         328.58732         pb           Cr         52         135093.7         103.17297         pb           Co         59         111053         6.92001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                |          |       |               |            |             |  |  |  |  |
| Se         82         298.8         1.062 ppb           Rh         103         877299.1         ppb           Cd         111         4700.8         1.22309 ppb           Cd         114         10925.1         1.18211 ppb           Sb         123         11832.6         1.21779 ppb           Sb         123         11832.6         1.21774 ppb           Ho         165         1657472.3         ppb           Ho         165         1657472.3         ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53           Sample Da Airtech         Concentration Results         Meas. Intens Conc. Mear Report Unit           Ch         6         78690.2         ppb           -         Be         9         123.3         0.15087 ppb           -         Sc         45         519081.9         ppb           -         Sc         45         512460.5         313.80984 ppb           Cr         53         512460.5         313.80984 ppb         105           Cr         53         512460.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                |          |       |               |            |             |  |  |  |  |
| Rh         103         877299.1         ppb           Cd         111         4700.8         1.22309 ppb           Cd         114         10925.1         1.18211 ppb           Sb         121         15314.6         1.21979 ppb           Sb         123         11832.6         1.21774 ppb           > Ho         165         1657472.3         ppb           -         Pb         208         92521.7         1.04917 ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample De Airtech         Concentration Results           Sample De Airtech         Concentration Results         Meas. Intens Conc. Mear Report Unit           >         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087 ppb           -         Sc         45         519081.9         ppb           -         Sc         45         519081.9         ppb           -         Sc         45         519081.9         ppb           Cr         52         4308498.1         328.58732 ppb         24.28814 ppb           Mn         65         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                |          |       |               |            |             |  |  |  |  |
| Cd       111       4700.8       1.22309 ppb         -       Cd       114       10925.1       1.18211 ppb         -       Sb       121       15314.6       1.21979 ppb         -       Sb       123       11832.6       1.21774 ppb         >       Ho       165       1657472.3       ppb         -       Pb       208       92521.7       1.04917 ppb         -       Rr       83       -114.7       mg/L         Method 6020 & 200.8 Metals Summary Report       Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airtech       Concentration Results       Meas. Intens Conc. Mear Report Unit       Pho         -       Li       6       78690.2       ppb         -       Sc       45       519081.9       ppb         -       Cr       52       4308498.1       328.58732 ppb         -       Cr       52       513680.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                |          |       |               | 1,002      | · · .       |  |  |  |  |
| -       Cd       114       10925.1       1.18211 ppb         -       Sb       121       15314.6       1.21979 ppb         -       Sb       123       11832.6       1.21774 ppb         >       Ho       165       1657472.3       ppb         -       Pb       208       92521.7       1.04917 ppb         Kr       83       -114.7       mg/L         Method 6020 & 200.8 Metals Summary Report       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airtech       Concentration Results       Massion         Concentration Results       Massion       Massion         -       Sc       45       519081.9       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             |                                |          |       |               | 4 00000    |             |  |  |  |  |
| -       Sb       121       15314.6       1.21979       ppb                 Sb       123       11832.6       1.21774       ppb          >       Ho       165       1657472.3       ppb          -       Pb       208       92521.7       1.04917       ppb         Kr       83       -114.7       mg/L         Method 6020 & 200.8 Metals Summary Report       Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53       Sample Da Athech       Concentration Results         Concentration Results       Meas. Intens Conc. Mear Report Unit          >       Li       6       78690.2       ppb          -       Be       9       123.3       0.15087       ppb          -       Sc       45       519081.9       ppb          -       Cr       52       4308498.1       328.58732 ppb          -       Cr       52       135993.7       103.17297 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                |          |       |               |            |             |  |  |  |  |
| Sb       123       11832.6       1.21774 ppb         >       Ho       165       1657472.3       ppb         -       Pb       208       92521.7       1.04917 ppb         Kr       83       -114.7       mg/L         Method 6020 & 200.8 Metals Summary Report       sample D2       3       -114.7       mg/L         Sample Da Thursday, October 13, 2011 00:49:53       sample Da Thursday, October 13, 2011 00:49:53       sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airtech       -       -       Analyte       Mass       Meas. Intens Conc. Mear Report Unit         Concentration Results       -       -       ppb       -       ppb         -       Be       9       123.3       0.15087 ppb       -         -       Sc       45       519081.9       ppb       -         -       Sc       45       519081.9       ppb       -         -       Cr       52       135093.7       103.17297 ppb       -         -       Co       59       111053       6.92001 ppb       -         -       Ni       60       4538651.8       1357.7902 ppb       -         -       Co       59       111053 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                |          |       |               |            |             |  |  |  |  |
| I>         Ho         165         1657472.3         ppb           -         Pb         208         92521.7         1.04917         ppb           Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample ID:         17506-1fh           Sample Da Thursday, October 13, 2011 00:49:53         Sample De Airtech           Concentration Results         Meas. Intens Conc. Mear Report Unit           >         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087         ppb           -         Sc         45         519081.9         ppb           -         Sc         45         512460.5         313.80984         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Mn         55         2135693.7         103.17297         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                |          |       |               |            |             |  |  |  |  |
| Image: bit is a straight of the straig                                                                                                                                                         |               |                                |          |       |               | 1.21//4    | • • .       |  |  |  |  |
| Kr         83         -114.7         mg/L           Method 6020 & 200.8 Metals Summary Report         Sample ID: 17506-1fh         sample ID: 17506-1fh         sample Da Thursday, October 13, 2011 00:49:53           Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Thursday, October 13, 2011 00:49:53         sample Da Thursday, October 13, 2011 00:49:53           Sample Da Airtech         Concentration Results         Meas. Intens Conc. Mear Report Unit           P         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087 ppb           -         Be         9         123.3         0.15087 ppb           -         Sc         45         519081.9         ppb           -         Cr         52         4308498.1         328.58732 ppb           Cr         53         512460.5         313.80984 ppb           Cr         53         512460.5         313.80984 ppb           Co         59         111053         6.92001 ppb           Mn         60         4538651.8         1357.7902 ppb           As         75         63263.4         24.28814 ppb           Se         77         79979.8         362.76118 ppb           Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | •                              | -        |       |               |            |             |  |  |  |  |
| Method 6020 & 200.8 Metals Summary Report         Sample Da Thursday, October 13, 2011 00:49:53         Sample Da Airtech         Concentration Results         Meas. Intens Conc. Mear Report Unit         >       Li       6       78690.2       ppb         -       Be       9       123.3       0.15087 ppb         -       Sc       45       519081.9       ppb         -       Sc       45       519081.9       ppb         -       Sc       45       519081.9       ppb         -       Cr       52       4308498.1       328.58732 ppb         -       Cr       52       512460.5       313.80984 ppb         -       Cr       52       2135993.7       103.17297 ppb         -       Co       59       111053       6.92001 ppb         -       Ni       60       4538651.8       1357.7902 ppb         -       Se       77       79979.8       362.76118 ppb         -       Se<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                |          |       |               | 1.04917    |             |  |  |  |  |
| Sample ID: 17506-1fh         Sample Da Thursday, October 13, 2011 00:49:53         Sample De Airtech         Concentration Results         Analyte       Mass         Maise       Meas. Intens Conc. Mear Report Unit         Li       6         Be       9         Cr       519081.9         Cr       52         Analyte       Mass         Mm       55         Cr       52         Analyte       Mass         Mn       55         Cr       52         Analyte       Mass         Mn       55         Cr       52         Ass       75         Ass       75         See       77         See       77         See       77         Mn       60         Ass       75         Safe51.8       1357.7902 ppb         See       77         See       77         See       77         See       797978         Sec.77       79979.8         Sec.76118       ppb         Cd       111         8485.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                |          |       |               |            | mg/L        |  |  |  |  |
| Sample Da Thursday, October 13, 2011 00:49:53         Sample De Airtech         Concentration Results         Analyte       Mass       Meas. Inten: Conc. Mear Report Unit         >       Li       6       78690.2       ppb         -       Be       9       123.3       0.15087 ppb         -       Sc       45       519081.9       ppb         -       Sc       45       512460.5       313.80984 ppb         -       Cr       52       4308498.1       328.58732 ppb         -       Cr       52       4308498.1       328.58732 ppb         -       Cr       53       512460.5       313.80984 ppb         -       Cr       53       512460.5       313.80984 ppb         -       Co       59       111053       6.92001 ppb         -       Co       59       111053       6.92001 ppb         -       Se       75       63263.4       24.28814 ppb         -       Se       77       7997.8       362.76118 ppb         -       Se       82       10276       385.37977 ppb         -       Rh       103       865684       ppb         - <td< td=""><td></td><td></td><td>etals Su</td><td>mma</td><td>ary Report</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                | etals Su | mma   | ary Report    |            |             |  |  |  |  |
| Sample De Airtech           Analyte         Mass         Meas. Inten: Conc. Mear Report Unit           >         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087         ppb           -         Be         9         123.3         0.15087         ppb           -         Sc         45         519081.9         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Cr         53         512460.5         317.7907         ppb           -         Ni         60         4538651.8         1367.7902         ppb           -         Se         77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                |          |       |               |            |             |  |  |  |  |
| Analyte         Mass         Meas. Intens Conc. Mear Report Unit           >         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087 ppb           -         Sc         45         519081.9         ppb           -         Sc         45         519081.9         ppb           -         Cr         52         4308498.1         328.58732 ppb           -         Cr         53         512460.5         313.60984 ppb           -         Mn         55         2135993.7         103.17297 ppb           -         Co         59         111053         6.92001 ppb           -         Mn         60         4538651.8         1357.7902 ppb           -         Co         59         111053         6.92001 ppb           -         As         75         63263.4         24.28814 ppb           -         Se         82         102786         385.37977 ppb           -         Se         82         102786         385.37977 ppb           -         Cd         114         8485.5         2.27521 ppb           -         Cd         114         15528.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                | ctober 1 | 3, 20 | 011 00:49:53  | 3          |             |  |  |  |  |
| Analyte         Mass         Meas. Intens Conc. Mear Report Unit           >         Li         6         78690.2         ppb           -         Be         9         123.3         0.15087 ppb           -         Sc         45         519081.9         ppb           -         Sc         45         519081.9         ppb           -         Cr         52         4308498.1         328.58732 ppb           -         Cr         53         512460.5         313.80984 ppb           -         Cr         53         512460.5         313.80984 ppb           -         Co         59         111053         6.92001 ppb           -         Co         59         111053         6.92001 ppb           -         Co         59         111053         6.92001 ppb           -         Se         77         79979.8         362.76118 ppb           -         Se         77         79979.8         362.76118 ppb           -         Se         82         102786         385.37977 ppb           -         Se         82         102786         385.37977 ppb           -         Cd         114         15528.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                |          |       |               |            |             |  |  |  |  |
| Li         6         78690.2         ppb           -         Be         9         123.3         0.15087         ppb           -         Sc         45         519081.9         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Co         59         111053         6.92001         ppb           -         Co         59         111053         6.92001         ppb           -         Co         59         111053         6.92001         ppb           -         Se         75         63263.4         24.28814         ppb           -         Se         77         79979.8         362.76118         ppb           -         Se         82         102786         385.37977         ppb           -         Cd         111         8485.5         2.27521         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concentration | n Results                      |          |       |               |            |             |  |  |  |  |
| -         Be         9         123.3         0.15087         ppb           -         Sc         45         519081.9         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         52         4308498.1         328.58732         ppb           -         Cr         53         512460.5         313.80984         ppb           -         Mn         55         2135993.7         103.17297         ppb           -         Co         59         111053         6.92001         ppb           -         Ni         60         4538651.8         1367.7902         ppb           -         Se         75         63263.4         24.28814         ppb           -         Se         77         7997.8         362.76118         ppb           -         Se         82         10276         385.37977         ppb           -         Rh         103         865684         ppb           -         Cd         111         8485.5         2.27521         ppb           -         Cd         114         16528.8         1.72237         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                | lass     |       |               | Conc. Mear | Report Unit |  |  |  |  |
| Sc         45         519081.9         ppb           Cr         52         4308498.1         328.58732         ppb           Cr         53         512460.5         313.80984         ppb           Mn         55         2135993.7         103.17297         ppb           Co         59         111053         6.92001         ppb           Ni         60         4538651.8         1357.7902         ppb           As         75         63263.4         24.28814         ppb           Se         77         79979.8         362.76118         ppb           Se         82         102786         385.37977         ppb           Cd         111         8485.5         2.27521         ppb           Cd         114         15528.8         1.72237         ppb           Cd         114         15528.8         1.72237         ppb           Sb         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           Ho         165         1805287.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > Li          |                                |          | 6     |               |            |             |  |  |  |  |
| Cr         52         4308498.1         328.58732         ppb           Cr         53         512460.5         313.80984         ppb           Mn         55         2135993.7         103.17297         ppb           Co         59         111053         6.92001         ppb           Ni         60         4538651.8         1357.7902         ppb           As         75         63263.4         24.28814         ppb           Se         77         79979.8         362.76118         ppb           Se         82         102786         385.37977         ppb           Se         82         102786         385.37977         ppb           Cd         111         8485.5         2.27521         ppb           Cd         114         15528.8         1.72237         ppb           Cd         114         15528.8         1.72237         ppb           Sb         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           Ho         165         180532.9         13.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                |          | 9     | 123.3         | 0,15087    | ppb         |  |  |  |  |
| Cr       53       512460.5       313.80984       ppb         Mn       55       2135993.7       103.17297       ppb         Co       59       111053       6.92001       ppb         Ni       60       4538651.8       1357.7902       ppb         As       75       63263.4       24.28814       ppb         Se       77       79979.8       362.76118       ppb         Se       82       102786       385.37977       ppb         Se       82       102786       385.37977       ppb         Cd       111       8485.5       2.27521       ppb         Cd       114       15528.8       1.72237       ppb         Cd       121       34967.8       2.60735       ppb         Sb       123       27202.3       2.61878       ppb         Ho       165       1805287.6       ppb         Ho       165       1805287.6       ppb         -       Pb       208       1080532.9       13.62248       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Si          | с                              |          | 45    | 519081.9      |            | ppb         |  |  |  |  |
| Mn         55         2135993.7         103.17297         ppb           Co         59         111053         6.92001         ppb           Ni         60         4538651.8         1357.7902         ppb           As         75         63263.4         24.28814         ppb           Se         77         79979.8         362.76118         ppb           Se         82         102786         385.37977         ppb           Se         82         102786         385.37977         ppb           Cd         111         8485.5         2.27521         ppb           Cd         114         15528.8         1.72237         ppb           Cd         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           Ho         165         1805287.6         ppb           Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | j Ci          | r                              |          | 52    | 4308498.1     | 328.58732  | ppb         |  |  |  |  |
| Co         59         111053         6.92001 ppb           Ni         60         4538651.8         1357.7902 ppb           As         75         63263.4         24.28814 ppb           Se         77         79979.8         362.76118 ppb           Se         82         102766         385.37977 ppb           Rh         103         865684         ppb           Cd         111         8485.5         2.27521 ppb           Cd         114         15528.8         1.72237 ppb           Sb         121         34967.8         2.60735 ppb           Sb         123         27202.3         2.61878 ppb           Ho         165         1805287.6         ppb           Ho         165         1805287.6         ppb           Ho         165         180532.9         13.62248 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) C           | Г                              |          | 53    | 512460.5      | 313.80984  | ppb         |  |  |  |  |
| Co         59         111053         6.92001 ppb           Ni         60         4538651.8         1357.7902 ppb           As         75         63263.4         24.28814 ppb           Se         77         79979.8         362.76118 ppb           Se         82         102786         385.37977 ppb           Rh         103         865684         ppb           Cd         111         8485.5         2.27521 ppb           Cd         114         15528.8         1.72237 ppb           Cd         121         34967.8         2.60735 ppb           Sb         123         27202.3         2.61878 ppb           Ho         165         1805287.6         ppb           Ho         165         1805287.9         13.62248 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i M           | In                             |          | 55    | 2135993.7     | 103.17297  | dqq         |  |  |  |  |
| Ni         60         4538651.8         1357.7902 ppb           As         75         63263.4         24.28814 ppb           Se         77         79979.8         362.76118 ppb           Se         82         102786         385.37977 ppb           Rh         103         865684         ppb           Cd         111         8485.5         2.27521 ppb           -         Cd         114         15528.8         1.72237 ppb           -         Sb         121         34967.8         2.60735 ppb           Sb         123         27202.3         2.61878 ppb           Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i c           | 0                              |          | 59    |               |            |             |  |  |  |  |
| As         75         63263.4         24.28814         ppb           Se         77         79979.8         362.76118         ppb           Se         82         102786         385.37977         ppb           Rh         103         865684         ppb           Cd         111         8485.5         2.27521         ppb           -         Cd         114         15528.8         1.72237         ppb           -         Sb         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                |          |       |               |            |             |  |  |  |  |
| Se         77         79979.8         362.76118         ppb           Se         82         102786         385.37977         ppb           Rh         103         865684         ppb           Cd         111         8485.5         2.27521         ppb           -         Cd         114         15528.8         1.72237         ppb           -         Sb         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                |          |       |               |            |             |  |  |  |  |
| Se         82         102786         385.37977         ppb           >         Rh         103         865684         ppb                     Cd         111         8485.5         2.27521         ppb            -         Cd         114         15528.8         1.72237         ppb            -         Sb         121         34967.8         2.60735         ppb            -         Sb         123         27202.3         2.61878         ppb            >         Ho         165         1805287.6         ppb            -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                |          |       |               |            |             |  |  |  |  |
| Rh         103         865684         ppb           Cd         111         8485.5         2.27521 ppb           -         Cd         114         15528.8         1.72237 ppb           -         Sb         121         34967.8         2.60735 ppb           -         Sb         123         27202.3         2.61878 ppb           >         Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                |          |       |               |            |             |  |  |  |  |
| Cd         111         8485.5         2.27521         ppb           -         Cd         114         15528.8         1.72237         ppb           -         Sb         121         34967.8         2.60735         ppb           -         Sb         123         27202.3         2.61878         ppb           >         Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                |          |       |               |            |             |  |  |  |  |
| -         Cd         114         15528.8         1.72237         ppb           -         Sb         121         34967.8         2.60735         ppb           -         Sb         123         27202.3         2.61878         ppb           >         Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                |          |       |               | 2 37534    |             |  |  |  |  |
| -         Sb         121         34967.8         2.60735         ppb           Sb         123         27202.3         2.61878         ppb           Ho         165         1805287.6         ppb           Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                |          |       |               |            |             |  |  |  |  |
| Sb         123         27202.3         2.61878         ppb           >         Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                |          |       |               |            |             |  |  |  |  |
| >         Ho         165         1805287.6         ppb           -         Pb         208         1080532.9         13.62248         ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                |          |       |               |            |             |  |  |  |  |
| - Pb 208 1080532.9 13.62248 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                |          |       |               | ∠,018/8    |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                |          |       |               | 10 000 40  |             |  |  |  |  |
| r√r 53 -5523.3 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                |          |       |               | 13.02248   |             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K             | ſ                              |          | 03    | -0023.3       |            | mg/L        |  |  |  |  |

| PerkinElmer ELAN 6100 ICP-MS |                           |            |            |                         |                        |              |  |  |  |
|------------------------------|---------------------------|------------|------------|-------------------------|------------------------|--------------|--|--|--|
| Method 60                    | 20 & 200.8                | Metals     | Summ       | ary Report              |                        |              |  |  |  |
| Sample ID                    | OC Std 1                  |            |            | •                       |                        |              |  |  |  |
|                              |                           | Octobe     | r 13, 2    | 2011 00:52:0            | 5                      |              |  |  |  |
| Sample De                    |                           |            |            |                         |                        |              |  |  |  |
| Concentra                    | tion Results              | Maaa       |            | Mono Intenr             | Cone Mee               | Depart Linit |  |  |  |
| >                            | Analyte<br>Li             | Mass       | 6          | Meas. Intens<br>62948.4 | Conc. Mear             | ppb          |  |  |  |
| -                            | Be                        |            | 9          | 13.3                    | -0.03023               |              |  |  |  |
| i-                           | Sc                        |            | 45         | 346168                  | 0.00020                | ppb          |  |  |  |
| Ì                            | Cr                        |            | 52         | 12278                   | 0.03132                |              |  |  |  |
| i                            | Cr                        |            | 53         | 32514.1                 | -0.20693               |              |  |  |  |
| Ì                            | Mn                        |            | 55         | 6888.6                  | -0.01074               | ppb          |  |  |  |
|                              | Co                        |            | 59         | 615                     | -0.01139               |              |  |  |  |
| ļ                            | Ni                        |            | 60         | 2207.3                  | 0.14931                |              |  |  |  |
|                              | As                        |            | 75         | -98.6                   | 0.01888                |              |  |  |  |
|                              | Se<br>Se                  |            | 77<br>82   | 4365.4<br>33.2          | 0.01382                | •••          |  |  |  |
| >                            | Rh                        |            | 103        | 876035.2                | 0.07841                | ppb          |  |  |  |
|                              | Cd                        |            | 111        | 142.6                   | -0.0091                | • • .        |  |  |  |
| -                            | Cď                        |            | 114        | 327.1                   | -0.00884               |              |  |  |  |
| -                            | Sb                        |            | 121        | 475.7                   | -0.00952               |              |  |  |  |
| i i                          | Sb                        |            | 123        | 368,2                   | -0.00683               |              |  |  |  |
| >                            | Но                        |            | 165        | 1686910.7               |                        | ppb          |  |  |  |
| -                            | Pb                        |            | 208        | 16489.8                 | -0.01855               | ppb          |  |  |  |
|                              | Kr                        |            | 83         | _ 116.9                 |                        | mg/L         |  |  |  |
|                              | 20 & 200.8                | Vietais \$ | Summ       | ary Report              |                        |              |  |  |  |
| Sample ID                    |                           | Ortobo     | - 12 0     | 044 00-54-4             |                        |              |  |  |  |
| Sample Da                    |                           | UCIODE     | r 13, 2    | 2011 00:54:14           | 4                      |              |  |  |  |
|                              | tion Results              |            |            |                         |                        |              |  |  |  |
| concentra                    | Analyte                   | Mass       |            | Meas. Intens            | Conc. Mear             | Report Unit  |  |  |  |
| >                            | Li                        | 111200     | 6          | 62003,9                 | conto. medi            | ppb          |  |  |  |
| -                            | Be                        |            | 9          |                         | 101.65749              |              |  |  |  |
| i-                           | Sc                        |            | 45         | 334573.6                |                        | ppb          |  |  |  |
| İ                            | Cr                        |            | 52         | 1340606.9               | 102.75199              |              |  |  |  |
| 1                            | Cr                        |            | 53         | 192971.3                | 106.29562              | ppb          |  |  |  |
| 1                            | Mn                        |            | 55         |                         | 109.51695              |              |  |  |  |
|                              | Co                        |            | 59         |                         | 107.09756              |              |  |  |  |
|                              | Ni                        |            | 60         |                         | 106.93155              |              |  |  |  |
|                              | As                        |            | 75         |                         | 104.39761              |              |  |  |  |
|                              | Se<br>Se                  |            | 77<br>82   |                         | 101.87503<br>102.55813 |              |  |  |  |
| >                            | Rh                        |            | 103        | 856850.2                | 102.00010              | ppb          |  |  |  |
|                              | Cd                        |            | 111        |                         | 104.60714              |              |  |  |  |
| -                            | Cď                        |            | 114        | 895489.1                | 102.98293              |              |  |  |  |
| -                            | Sb                        |            | 121        | 1266359.1               | 101.35142              |              |  |  |  |
|                              | Sb                        |            | 123        | 989807.1                | 102.18657              |              |  |  |  |
| j>                           | Ho                        |            | 165        | 1712314.3               |                        | ppb          |  |  |  |
| -                            | Pb                        |            | 208        | 7680244.8               | 103.70305              | ppb          |  |  |  |
|                              | Kr                        |            | 83         | -24834.7                |                        | mg/L         |  |  |  |
|                              | 20 & 200.8                | Vietals \$ | Summ       | ary Report              |                        |              |  |  |  |
|                              | : 17506-2fh               |            |            |                         | _                      |              |  |  |  |
|                              |                           | Octobel    | r 13, 2    | 2011 00:56:20           | 6                      |              |  |  |  |
| Sample De                    | e Airrech<br>tion Results |            |            |                         |                        |              |  |  |  |
| Concentrat                   | Analyte                   | Mass       |            | Meas. Intens            | Cone Mea               | Report Linit |  |  |  |
| >                            | Li                        | MICEO      | 6          | 86239.7                 | CONC. MEdi             | ppb          |  |  |  |
| -                            | Be                        |            | 9          | 140.7                   | 0.15928                |              |  |  |  |
| -                            | Sc                        |            | 45         | 599724.3                | 0.10020                | ppb          |  |  |  |
| i                            | Cr                        |            | 52         | 1128236.9               | 88.44294               |              |  |  |  |
| i                            | Cr                        |            | 53         | 138155.3                | 72.27282               |              |  |  |  |
| i                            | Mn                        |            | 55         | 841467.9                | 41.89372               | ppb          |  |  |  |
| İ                            | Co                        |            | 59         | 50442.2                 | 3.22712                |              |  |  |  |
| 1                            | Ni                        |            | 60         |                         | 816.03818              |              |  |  |  |
| 1                            | As                        |            | 75         | 53578.1                 | 21.28066               | ••           |  |  |  |
| 1                            | Se                        |            | 77         |                         | 288.06458              |              |  |  |  |
|                              | Se                        |            | 82         | 79307.5                 | 307.63333              | · · .        |  |  |  |
| >                            | Rh                        |            | 103        | 836795.8                | 4 45 407               | ppb          |  |  |  |
|                              | Cd                        |            | 111<br>114 | 4242.4                  | 1.15407                |              |  |  |  |
| E                            | Cd<br>Sb                  |            | 114        | 5710.9<br>181674.6      | 0.62736 14.20624       |              |  |  |  |
| 1                            | Sb                        |            | 123        | 140568                  | 14.20624               |              |  |  |  |
| >                            | Но                        |            | 165        | 1747079.4               | 1-1.10204              | ppb          |  |  |  |
| -                            | Pb                        |            | 208        | 725855.6                | 9.38212                |              |  |  |  |
| •                            | Kr                        |            | 83         | -5204.9                 |                        | mg/L         |  |  |  |
|                              |                           |            |            |                         |                        | _            |  |  |  |

| PerkinElmer ELAN 6100 ICP-MS |                         |           |            |                         |                       |               |  |  |  |  |
|------------------------------|-------------------------|-----------|------------|-------------------------|-----------------------|---------------|--|--|--|--|
| Method 60                    | 20 & 200.8              | Metals    | Summ       | ary Report              |                       |               |  |  |  |  |
| Sample ID                    | ): 17506-2fh            |           |            |                         |                       |               |  |  |  |  |
| •                            |                         | Octobe    | r 13, 2    | 2011 00:58:3            | 5                     |               |  |  |  |  |
| Sample D                     |                         |           |            |                         |                       |               |  |  |  |  |
| Concentra                    | tion Results<br>Analyte | Mass      |            | Meas. Intens            | Cone Mea              | Peport   Init |  |  |  |  |
| >                            | Li                      | IVIdaa    | 6          | 89896                   | CONC. Medi            | ppb           |  |  |  |  |
| 1-<br>1-                     | Be                      |           | 9          | 122.7                   | 0.12279               |               |  |  |  |  |
| -                            | Sc                      |           | 45         | 606864.7                |                       | ppb           |  |  |  |  |
| i                            | Cr                      |           | 52         | 1138300.9               | 86.00802              |               |  |  |  |  |
| Ì                            | Cr                      |           | 53         | 140644.3                | 70.56528              | ppb           |  |  |  |  |
|                              | Mn                      |           | 55         | 878346.1                | 42.15987              | ppb           |  |  |  |  |
|                              | Co                      |           | 59         | 51235                   | 3.15992               |               |  |  |  |  |
|                              | Ni                      |           | 60         |                         | 790.46758             |               |  |  |  |  |
|                              | As                      |           | 75<br>77   | 55403.8                 | 21.22373<br>285.83947 |               |  |  |  |  |
|                              | Se<br>Se                |           | 82         |                         | 305.55344             |               |  |  |  |  |
| >                            | Rh                      |           | 103        | 867636.7                | 000.000               | ppb           |  |  |  |  |
| -                            | Cd                      |           | 111        | 4132                    | 1.08232               |               |  |  |  |  |
| i-                           | Cd                      |           | 114        | 6430.7                  | 0.68512               |               |  |  |  |  |
| i-                           | Sb                      |           | 121        | 184796.4                | 13.97928              |               |  |  |  |  |
| İ                            | Sb                      |           | 123        | 144308.1                | 14.08263              | ppb           |  |  |  |  |
| >                            | Ho                      |           | 165        | 1806182.3               |                       | ppb           |  |  |  |  |
| -                            | Pb                      |           | 208        | 732805.5                | 9.15613               |               |  |  |  |  |
|                              | Кг                      |           | 83         | -5416.9                 |                       | mg/L          |  |  |  |  |
|                              | 20 & 200.8              | Metals    | Summ       | ary Report              |                       |               |  |  |  |  |
|                              | : 17506-3fh             | Ortoba    | - 40 0     | 044 04-00-4             |                       |               |  |  |  |  |
|                              |                         | Octobe    | i 13, z    | 2011 01:00:4            | 4                     |               |  |  |  |  |
| Sample De                    | tion Results            |           |            |                         |                       |               |  |  |  |  |
| Concentra                    | Analyte                 | Mass      |            | Meas. Intens            | Conc. Mear            | Report Unit   |  |  |  |  |
| >                            | Li                      | 101000    | 6          | 86602.5                 |                       | ppb           |  |  |  |  |
| -                            | Be                      |           | 9          | 98.3                    | 0.09235               |               |  |  |  |  |
| -                            | Sc                      |           | 45         | 473366.8                |                       | ppb           |  |  |  |  |
| i                            | Cr                      |           | 52         | 674120.9                | 49.90563              | ppb           |  |  |  |  |
| Í                            | Cr                      |           | 53         | 85453.5                 | 33.83574              | ppb           |  |  |  |  |
| 1                            | Mn                      |           | 55         | 595191.6                | 28.09412              | ppb           |  |  |  |  |
|                              | Co                      |           | 59         | 31518.2                 | 1.89986               |               |  |  |  |  |
|                              | Ni                      |           | 60         |                         | 253.67497             |               |  |  |  |  |
|                              | As                      |           | 75         | 63526.7                 | 24.0093               |               |  |  |  |  |
|                              | Se                      |           | 77         | 84492.5                 |                       |               |  |  |  |  |
|                              | Se<br>Rh                |           | 82<br>103  | 108250.7<br>878908.8    | 399.79672             | · · .         |  |  |  |  |
| >                            | Cd                      |           | 111        | 3099.2                  | 0.78785               | ppb           |  |  |  |  |
|                              | Cd                      |           | 114        | 3776.4                  | 0.37797               |               |  |  |  |  |
| -                            | Sb                      |           | 121        | 27394.9                 | 2.01093               |               |  |  |  |  |
|                              | Sb                      |           | 123        | 21268,9                 | 2.01627               |               |  |  |  |  |
| >                            | Но                      |           | 165        | 1824098.3               |                       | ppb           |  |  |  |  |
| - i-                         | Pb                      |           | 208        | 668614.5                | 8.24781               | ppb           |  |  |  |  |
|                              | Kr                      |           | 83         | -4208.1                 |                       | mg/L          |  |  |  |  |
|                              | 20 & 200.8              | Metals \$ | Summ       | ary Report              |                       |               |  |  |  |  |
|                              | : 17506-3fh             |           |            |                         |                       |               |  |  |  |  |
|                              |                         | Octobe    | r 13, 2    | 2011 01:02:5            | 4                     |               |  |  |  |  |
| Sample De                    |                         |           |            |                         |                       |               |  |  |  |  |
| Concentra                    | tion Results            | Mana      |            | Maan Intend             | Cone Man              | Dened Link    |  |  |  |  |
| >                            | <b>Analyte</b><br>Li    | Mass      | 6          | Meas. Intens<br>85331.3 | Conc. Wear            | ppb           |  |  |  |  |
| -                            | Be                      |           | 9          | 24599.2                 | 38.22955              |               |  |  |  |  |
| -                            | Sc                      |           | 45         | 460902.3                | 00.22000              | ppb           |  |  |  |  |
|                              | Cr                      |           | 52         | 1379883.4               | 103.5837              |               |  |  |  |  |
| 1                            | Cr                      |           | 53         | 166908.7                | 86.80341              |               |  |  |  |  |
| i                            | Mn                      |           | 55         | 1741530.9               | 83.22418              |               |  |  |  |  |
| i                            | Co                      |           | 59         | 879076.9                | 54.56051              |               |  |  |  |  |
| i                            | Ni                      |           | 60         | 1016590.9               | 300.64628             | ppb           |  |  |  |  |
|                              | As                      |           | 75         | 163460.6                | 62.01241              | ppb           |  |  |  |  |
| 1                            | Se                      |           | 77         |                         | 408.11668             | ••            |  |  |  |  |
|                              | Se                      |           | 82         | 115887,8                | 430.02235             | ppb           |  |  |  |  |
| >                            | Rh                      |           | 103        | 875042.6                |                       | bbp           |  |  |  |  |
| 1                            | Cd                      |           | 111        | 154247.4                | 41.75689              |               |  |  |  |  |
| -                            | Cd                      |           | 114        | 362738.4                | 40.82343              |               |  |  |  |  |
| -                            | Sb                      |           | 121        | 584461.2                | 44.14048              |               |  |  |  |  |
| >                            | Sb<br>Ho                |           | 123<br>165 | 451227.4<br>1813252.4   | 43.95859              |               |  |  |  |  |
| -                            | Pb                      |           | 208        | 4287938.2               | 54.54714              | ppb           |  |  |  |  |
| I                            | Kr                      |           | 83         | -4161.1                 | 01.01111              | mg/L          |  |  |  |  |
|                              |                         |           |            |                         |                       |               |  |  |  |  |

|                                                                                                                                         |                                        | 10010         | -1410                                         | ,                                                                      |                                  |                                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------------|--|--|--|--|
| Method 6020 & 200.8 Metals Summary Report<br>Sample ID: 17506-4fh<br>Sample Da Thursday, October 13, 2011 01:05:03<br>Sample De Airtech |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
|                                                                                                                                         |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
| Concentrat                                                                                                                              | ion Results<br>Analyte                 | Mass          |                                               | Meas. Intens                                                           | Conc. Mear                       | Report Unit                            |  |  |  |  |
| >                                                                                                                                       | Li                                     | 111000        | 6                                             | 83384.2                                                                | oono. moa                        | ppb                                    |  |  |  |  |
|                                                                                                                                         | Be                                     |               | 9                                             | 53.3                                                                   | 0 00070                          | • •                                    |  |  |  |  |
| <u> -</u>                                                                                                                               |                                        |               |                                               |                                                                        | 0.02678                          | •••                                    |  |  |  |  |
| -                                                                                                                                       | Sc                                     |               | 45                                            | 497784.9                                                               |                                  | ppb                                    |  |  |  |  |
|                                                                                                                                         | Cr                                     |               | 52                                            | 223995.8                                                               | 16.35507                         |                                        |  |  |  |  |
|                                                                                                                                         | Cr                                     |               | 53                                            | 31631.6                                                                | -0.41085                         |                                        |  |  |  |  |
|                                                                                                                                         | Mn                                     |               | 55                                            | 323943.7                                                               | 15.47604                         | ppb                                    |  |  |  |  |
| 1                                                                                                                                       | Co                                     |               | 59                                            | 8669.5                                                                 | 0.49832                          | ppb                                    |  |  |  |  |
| 1                                                                                                                                       | Ni                                     |               | 60                                            | 43238.6                                                                | 12.52763                         | ppb                                    |  |  |  |  |
| i                                                                                                                                       | As                                     |               | 75                                            | 1190.9                                                                 | 0.51339                          | dad                                    |  |  |  |  |
|                                                                                                                                         | Se                                     |               | 77                                            | 453                                                                    | -18.4842                         |                                        |  |  |  |  |
|                                                                                                                                         | Se                                     |               | 82                                            | 49.3                                                                   | 0.14193                          |                                        |  |  |  |  |
|                                                                                                                                         | Rh                                     |               | 103                                           | 860015.5                                                               | 0.11100                          | ppb                                    |  |  |  |  |
| >                                                                                                                                       | Cd                                     |               | 111                                           | 1691.7                                                                 | 0.41842                          |                                        |  |  |  |  |
| -                                                                                                                                       |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
| -                                                                                                                                       | Cd                                     |               | 114                                           | 193.3                                                                  | -0.02318                         | • •                                    |  |  |  |  |
| -                                                                                                                                       | Sb                                     |               | 121                                           | 12386.1                                                                | 0.89076                          |                                        |  |  |  |  |
|                                                                                                                                         | Sb                                     |               | 123                                           | 9717.9                                                                 | 0.90471                          | ppb                                    |  |  |  |  |
| >                                                                                                                                       | Но                                     |               | 165                                           | 1808484.2                                                              |                                  | ppb                                    |  |  |  |  |
| i-                                                                                                                                      | Pb                                     |               | 208                                           | 286129.3                                                               | 3.42071                          | daa                                    |  |  |  |  |
| 1                                                                                                                                       | Kr                                     |               | 83                                            | -2596.7                                                                |                                  | mg/L                                   |  |  |  |  |
| Mathod 601                                                                                                                              | 20 & 200.8                             | dotale (      |                                               |                                                                        |                                  | ingre                                  |  |  |  |  |
|                                                                                                                                         |                                        | VIELAIS       | Summ                                          | агу кероп                                                              |                                  |                                        |  |  |  |  |
| Sample ID:                                                                                                                              |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
|                                                                                                                                         |                                        | Octobe        | r 13, 2                                       | 2011 01:07:12                                                          | 2                                |                                        |  |  |  |  |
| Sample De                                                                                                                               | Airtech                                |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
| Concentrat                                                                                                                              | ion Results                            |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
|                                                                                                                                         | Analyte                                | Mass          |                                               | Meas. Intens                                                           | Conc. Mear                       | Report Unit                            |  |  |  |  |
| >                                                                                                                                       | Li                                     |               | 6                                             | 85242.6                                                                |                                  | ppb                                    |  |  |  |  |
| 1                                                                                                                                       | Be                                     |               | 9                                             | 10.3                                                                   | -0.04218                         |                                        |  |  |  |  |
| -                                                                                                                                       |                                        |               |                                               |                                                                        | -0.04210                         |                                        |  |  |  |  |
| -                                                                                                                                       | Sc                                     |               | 45                                            | 425895.7                                                               |                                  | ppb                                    |  |  |  |  |
|                                                                                                                                         | Cr                                     |               | 52                                            | 83392.1                                                                | 4.94192                          | ppb                                    |  |  |  |  |
|                                                                                                                                         | Cr                                     |               | 53                                            | 14967. <b>4</b>                                                        | -12.27095                        | ppb                                    |  |  |  |  |
| i                                                                                                                                       | Mn                                     |               | 55                                            | 425952.6                                                               | 18.56547                         | ppb                                    |  |  |  |  |
| i                                                                                                                                       | Co                                     |               | 59                                            | 1237.8                                                                 | 0.02149                          |                                        |  |  |  |  |
|                                                                                                                                         | Ni                                     |               | 60                                            | 12160.5                                                                | 2.82851                          |                                        |  |  |  |  |
|                                                                                                                                         | As                                     |               | 75                                            | 194.5                                                                  |                                  |                                        |  |  |  |  |
| !                                                                                                                                       |                                        |               |                                               |                                                                        | 0.12223                          |                                        |  |  |  |  |
| ļ                                                                                                                                       | Se                                     |               | 77                                            | 429.7                                                                  | -18.77969                        |                                        |  |  |  |  |
|                                                                                                                                         | Se                                     |               | 82                                            | 17.5                                                                   | 0.01604                          | ppb                                    |  |  |  |  |
| >                                                                                                                                       | Rh                                     |               | 103                                           | 945936.6                                                               |                                  | ppb                                    |  |  |  |  |
| 1 I                                                                                                                                     | Cd                                     |               | 111                                           | 541                                                                    | 0.08789                          | ppb                                    |  |  |  |  |
| i-                                                                                                                                      | Cd                                     |               | 114                                           | 676.2                                                                  | 0.02485                          |                                        |  |  |  |  |
| 1                                                                                                                                       | Sb                                     |               | 121                                           | 6120.7                                                                 | 0,4077                           |                                        |  |  |  |  |
| 1-                                                                                                                                      | Sb                                     |               | 123                                           | 4778.3                                                                 | 0.41351                          |                                        |  |  |  |  |
|                                                                                                                                         |                                        |               |                                               |                                                                        | 0.41001                          |                                        |  |  |  |  |
| >                                                                                                                                       | Ho                                     |               | 165                                           | 1840690,1                                                              |                                  | ppb                                    |  |  |  |  |
| -                                                                                                                                       | Pb                                     |               | 208                                           | 268621.1                                                               | 3.13643                          | ppb                                    |  |  |  |  |
|                                                                                                                                         | Kr                                     |               | 83                                            | 74.8                                                                   |                                  | mg/L                                   |  |  |  |  |
| Method 602                                                                                                                              | 20 & 200.8 M                           | vietals S     | Summ                                          | ary Report                                                             |                                  |                                        |  |  |  |  |
| Sample ID:                                                                                                                              |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
|                                                                                                                                         |                                        | Octobe        | 13.2                                          | 2011 01:09:2                                                           | 1                                |                                        |  |  |  |  |
| Sample De                                                                                                                               |                                        | 0 0 0 0 0 0 0 |                                               |                                                                        | •                                |                                        |  |  |  |  |
|                                                                                                                                         |                                        |               |                                               |                                                                        |                                  |                                        |  |  |  |  |
| Concentrati                                                                                                                             |                                        | 14            |                                               | blass late                                                             | 0                                | Desert Link                            |  |  |  |  |
|                                                                                                                                         | Analyte                                | Mass          |                                               | Meas. Intens                                                           | Conc. Mear                       |                                        |  |  |  |  |
| >                                                                                                                                       | Li                                     |               | 6                                             | 84760.4                                                                |                                  | ppb                                    |  |  |  |  |
| -                                                                                                                                       | Be                                     |               | 9                                             | 22126.2                                                                | 34,59594                         | ppb                                    |  |  |  |  |
| -                                                                                                                                       | Sc                                     |               | 45                                            | 421009.4                                                               |                                  | ppb                                    |  |  |  |  |
| i                                                                                                                                       | Cr                                     |               | 52                                            | 831071.5                                                               | 56.43965                         |                                        |  |  |  |  |
| -                                                                                                                                       |                                        |               |                                               | 102246.5                                                               |                                  | • •                                    |  |  |  |  |
|                                                                                                                                         | Cr                                     |               | 53                                            |                                                                        | 39.06361                         |                                        |  |  |  |  |
| 1                                                                                                                                       | Mn                                     |               | 55                                            | 1586763.9                                                              | 69.05758                         |                                        |  |  |  |  |
|                                                                                                                                         | Co                                     |               | 59                                            | 917766.9                                                               | 51.90692                         |                                        |  |  |  |  |
| 1                                                                                                                                       | Ni                                     |               | 60                                            | 192528.8                                                               | 51.46304                         | ppb                                    |  |  |  |  |
| i                                                                                                                                       | As                                     |               | 75                                            | 96363.8                                                                | 33.32997                         |                                        |  |  |  |  |
| 1                                                                                                                                       | Se                                     |               | 77                                            | 6792.5                                                                 | 8.69354                          |                                        |  |  |  |  |
| 1                                                                                                                                       | ~~                                     |               | 82                                            | 8280                                                                   |                                  |                                        |  |  |  |  |
|                                                                                                                                         | C.                                     |               |                                               | 020U                                                                   | 27.95535                         | hhn                                    |  |  |  |  |
|                                                                                                                                         | Se                                     |               |                                               | 0004010                                                                |                                  |                                        |  |  |  |  |
| <br> >                                                                                                                                  | Rh                                     |               | 103                                           | 960101.9                                                               |                                  | ppb                                    |  |  |  |  |
| <br> ><br>                                                                                                                              | Rh<br>Cd                               |               | 103<br>111                                    | 150368.2                                                               | 37.07815                         | ppb                                    |  |  |  |  |
|                                                                                                                                         | Rh                                     |               | 103                                           |                                                                        | 37.07815<br>36.26902             | ppb                                    |  |  |  |  |
|                                                                                                                                         | Rh<br>Cd                               |               | 103<br>111                                    | 150368.2                                                               | 36.26902                         | ppb<br>ppb                             |  |  |  |  |
| <br> -<br> -                                                                                                                            | Rh<br>Cd<br>Cd<br>Sb                   |               | 103<br>111<br>114<br>121                      | 150368.2<br>353749.6<br>511995.2                                       | 36.26902<br>37.55039             | ppb<br>ppb<br>ppb                      |  |  |  |  |
| <br> <br>                                                                                                                               | Rh<br>Cd<br>Cd<br>Sb<br>Sb             |               | 103<br>111<br>114<br>121<br>123               | 150368.2<br>353749.6<br>511995.2<br>396306.8                           | 36.26902                         | ppb<br>ppb<br>ppb<br>ppb               |  |  |  |  |
| <br> -<br> -<br> >                                                                                                                      | Rh<br>Cd<br>Cd<br>Sb<br>Sb<br>Ho       |               | 103<br>111<br>114<br>121<br>123<br>165        | 150368.2<br>353749.6<br>511995.2<br>396306.8<br>1867086.7              | 36.26902<br>37.55039<br>37.49107 | ppb<br>ppb<br>ppb<br>ppb<br>ppb        |  |  |  |  |
| <br> <br>                                                                                                                               | Rh<br>Cd<br>Cd<br>Sb<br>Sb<br>Ho<br>Pb |               | 103<br>111<br>114<br>121<br>123<br>165<br>208 | 150368.2<br>353749.6<br>511995.2<br>396306.8<br>1867086.7<br>4047363.4 | 36.26902<br>37.55039             | ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb |  |  |  |  |
| <br> -<br> -<br> >                                                                                                                      | Rh<br>Cd<br>Cd<br>Sb<br>Sb<br>Ho       |               | 103<br>111<br>114<br>121<br>123<br>165        | 150368.2<br>353749.6<br>511995.2<br>396306.8<br>1867086.7              | 36.26902<br>37.55039<br>37.49107 | ppb<br>ppb<br>ppb<br>ppb<br>ppb        |  |  |  |  |

| PerkinElmer ELAN 6100 ICP-MS |                          |            |            |                      |                     |             |  |  |  |  |
|------------------------------|--------------------------|------------|------------|----------------------|---------------------|-------------|--|--|--|--|
| Method 60                    | 20 & 200.8               | Metals     | Summ       | ary Report           |                     |             |  |  |  |  |
|                              | ): <b>17506-1</b> bh     |            |            |                      |                     |             |  |  |  |  |
|                              |                          | Octobe     | r 13, 2    | 2011 01:11:3         | 1                   |             |  |  |  |  |
| Sample D                     |                          |            |            |                      |                     |             |  |  |  |  |
| Concentra                    | ition Results<br>Analyte | Mass       |            | Meas. Intens         | Conc Mea            | Report Unit |  |  |  |  |
| >                            | Li                       | maaa       | 6          | 92519                |                     | ppb         |  |  |  |  |
| -                            | Be                       |            | 9          | 17.7                 | -0.033              |             |  |  |  |  |
| İ-                           | Sc                       |            | 45         | 391048.7             |                     | ppb         |  |  |  |  |
|                              | Cr                       |            | 52         | 316616.2             | 22,23891            |             |  |  |  |  |
|                              | Cr                       |            | 53         | 43375                | 5.85462             |             |  |  |  |  |
|                              | Mn<br>Co                 |            | 55<br>59   | 572056.5             | 26.15534<br>5.96704 |             |  |  |  |  |
|                              | Ni                       |            | 59<br>60   | 100344.4<br>128039.8 |                     |             |  |  |  |  |
|                              | As                       |            | 75         | 37579.2              | 13,79455            |             |  |  |  |  |
|                              | Se                       |            | 77         |                      | 353.71854           |             |  |  |  |  |
| Ī                            | Se                       |            | 82         | 105329.7             | 377.14458           | ppb         |  |  |  |  |
| >                            | Rh                       |            | 103        | 906461.3             |                     | ppb         |  |  |  |  |
|                              | Cd                       |            | 111        | 2294.2               | 0.55224             |             |  |  |  |  |
| -                            | Cd<br>Sb                 |            | 114<br>121 | 2206<br>36269.2      | 0.19444<br>2.72158  |             |  |  |  |  |
| -                            | Sb                       |            | 123        | 27838.4              | 2.69657             |             |  |  |  |  |
| >                            | Ho                       |            | 165        | 1795214.9            | 2.00001             | ppb         |  |  |  |  |
| j-                           | Pb                       |            | 208        | 907727.6             | 11.47071            |             |  |  |  |  |
|                              | Kr                       |            | 83         | -1480.1              |                     | mg/L        |  |  |  |  |
|                              | 20 & 200.8               |            | Summ       | ary Report           |                     |             |  |  |  |  |
|                              | : 17506-2bh              |            |            |                      | -                   |             |  |  |  |  |
|                              |                          | Octobe     | r 13, 2    | 2011 01:13:4         | U                   |             |  |  |  |  |
| Sample De<br>Concentra       | tion Results             |            |            |                      |                     |             |  |  |  |  |
| Ochcentra                    | Analyte                  | Mass       |            | Meas. Intens         | Conc. Mear          | Report Unit |  |  |  |  |
| >                            | Li                       |            | 6          | 101778.3             |                     | ppb         |  |  |  |  |
| İ-                           | Be                       |            | 9          | 12                   | -0.04265            |             |  |  |  |  |
| -                            | Sc                       |            | 45         | 418728.3             |                     | ppb         |  |  |  |  |
|                              | Cr                       |            | 52         | 259275.2             | 18.02668            |             |  |  |  |  |
|                              | Cr<br>Mn                 |            | 53<br>55   | 34962.4              | 0.58409<br>43.73596 |             |  |  |  |  |
|                              | Co                       |            | 59         | 952694.2<br>67964.5  | 43.73598            |             |  |  |  |  |
|                              | Ni                       |            | 60         | 87819.5              | 24.57626            |             |  |  |  |  |
| i                            | As                       |            | 75         | 15919.9              | 5.86979             |             |  |  |  |  |
| i                            | Se                       |            | 77         | 36433.5              | 145.98417           |             |  |  |  |  |
|                              | Se                       |            | 82         | 46660.6              | 166.89021           | ppb         |  |  |  |  |
| >                            | Rh                       |            | 103        | 907497.8             |                     | ppb         |  |  |  |  |
|                              | Cd                       |            | 111        | 87447                | 22.79778            |             |  |  |  |  |
| -<br> -                      | Cd<br>Sb                 |            | 114<br>121 | 203168.8<br>18637.1  | 22.02226<br>1.37385 |             |  |  |  |  |
|                              | Sb                       |            | 123        | 14568.9              | 1.38821             |             |  |  |  |  |
| >                            | Ho                       |            | 165        | 1796829.1            | 1.00021             | ppb         |  |  |  |  |
| j-                           | Pb                       |            | 208        | <b>4448</b> 917.6    | 57.12862            |             |  |  |  |  |
|                              | Kr                       |            | 83         | -1645.4              |                     | mg/L        |  |  |  |  |
| Method 60                    | 20 & 200.8               | Vietals \$ | Summ       | ary Report           |                     |             |  |  |  |  |
|                              | : 17506-2bh              |            | - 40 0     | 044 04.45.4          | <b>_</b>            |             |  |  |  |  |
| Sample Da                    |                          | UCIODE     | 1 13, 2    | 011 01:15:4          | 3                   |             |  |  |  |  |
|                              | tion Results             |            |            |                      |                     |             |  |  |  |  |
| Jonounid                     | Analyte                  | Mass       |            | Meas. Intens         | Conc. Mear          | Report Unit |  |  |  |  |
| >                            | Li                       |            | 6          | 101332.4             |                     | ppb         |  |  |  |  |
| İ-                           | Be                       |            | 9          | 11.3                 | -0.04347            | ppb         |  |  |  |  |
| -                            | Sc                       |            | 45         | 424744.2             |                     | ppb         |  |  |  |  |
| 1                            | Cr                       |            | 52         | 259242.5             | 17.68244            |             |  |  |  |  |
|                              | Cr                       |            | 53         | 34903.2              | 0.15127             |             |  |  |  |  |
|                              | Mn                       |            | 55         | 947064,9             | 42.68441            | · · .       |  |  |  |  |
|                              | Co<br>Ni                 |            | 59<br>60   | 67692.8<br>88188.1   | 3.93121<br>24.22434 |             |  |  |  |  |
|                              | As                       |            | 75         | 16500.7              | 5.96633             |             |  |  |  |  |
|                              | Se                       |            | 77         | 36729.7              | 144.27045           |             |  |  |  |  |
|                              | Se                       |            | 82         | 46634.5              | 163.76134           |             |  |  |  |  |
| >                            | Rh                       |            | 103        | 924209.2             |                     | ppb         |  |  |  |  |
| Ì                            | Cd                       |            | 111        | 87507.6              | 22.39825            |             |  |  |  |  |
| -                            | Cd                       |            | 114        | 202595.4             | 21.56009            |             |  |  |  |  |
| -                            | Sb                       |            | 121        | 18662.1              | 1.35106             |             |  |  |  |  |
|                              | Sb                       |            | 123        | 14528.2              | 1.35984             |             |  |  |  |  |
| >                            | Ho<br>Pb                 |            | 165<br>208 | 1828334<br>4475066.6 | 56.47051            | ppb         |  |  |  |  |
| -                            | Kr                       |            | 208<br>83  | -1661.5              | 55.47051            | mg/L        |  |  |  |  |
|                              |                          |            |            |                      |                     |             |  |  |  |  |

| PerkinElmer ELAN 6100 ICP-MS                                     |               |          |            |                         |                        |             |
|------------------------------------------------------------------|---------------|----------|------------|-------------------------|------------------------|-------------|
| Method 6020 & 200.8 Metals Summary Report<br>Sample ID: QC Std 1 |               |          |            |                         |                        |             |
|                                                                  |               | October  | 13, 2      | 2011 01:18:0            | 1                      |             |
| Sample Des                                                       | scription:    |          |            |                         |                        |             |
| Concentration                                                    |               |          |            |                         | C                      | DesertIusit |
|                                                                  | Analyte<br>Li | Mass     | 6          | Meas. Intens<br>63654.2 | Conc. Mean             | ppb         |
| *                                                                | Be            |          | 9          | 16.3                    | -0.02415               |             |
| 4                                                                | Sc            |          | 45         | 334733.2                |                        | ppb         |
|                                                                  | Cr            |          | 52         | 12726.9                 | 0.06391                | ppb         |
|                                                                  | Cr            |          | 53         | 32757.4                 | -0.0953                | • •         |
|                                                                  | Mn            |          | 55         | 8704.4                  | 0.07685                |             |
|                                                                  | Co<br>Ni      |          | 59<br>60   | 406.7<br>1605.8         | -0.02438<br>-0.02811   |             |
|                                                                  | As            |          | 75         | 148.1                   | 0.11101                | • •         |
|                                                                  | Se            |          | 77         | 5044.1                  | 3.19821                |             |
|                                                                  | Se            |          | 82         | 37.6                    | 0.09396                | ppb         |
|                                                                  | Rh            |          | 103        | 877122.8                |                        | ppb         |
|                                                                  | Cd            |          | 111        | 130.1                   | -0.01255               |             |
|                                                                  | Cd<br>Sb      |          | 114<br>121 | 271.5<br>514.7          | -0.01508<br>-0.00577   |             |
|                                                                  | Sb            |          | 123        | 383                     | -0.00477               |             |
|                                                                  | Ho            |          | 165        | 1664708.7               | 0.00117                | ppb         |
| ,                                                                | Pb            |          | 208        | 16328.1                 | -0.01791               |             |
|                                                                  | Kr            |          | 83         | 112.8                   |                        | mg/L        |
| Method 602                                                       |               | letals S | Summ       | ary Report              |                        |             |
| Sample ID:                                                       |               | <b></b>  | . 40. 0    | 044.04-00-41            |                        |             |
| Sample Da<br>Sample Des                                          |               | JCIODEr  | 13, 2      | 011 01:20:10            | 0                      |             |
| Concentratio                                                     |               |          |            |                         |                        |             |
|                                                                  |               | Mass     | 1          | Meas. Intens            | Conc. Mear             | Report Unit |
|                                                                  | Li            |          | 6          | 58780,8                 |                        | ppb         |
| - j                                                              | Be            |          | 9          | 45748.9                 | 103.24432              | ppb         |
|                                                                  | Sc            |          | 45         | 317073.4                |                        | ppb         |
|                                                                  | Cr            |          | 52         | 1254409.8               | 99.42591               |             |
|                                                                  | Cr            |          | 53         | 179856.8                | 101.7153               |             |
|                                                                  | Mn<br>Co      |          | 55<br>59   | 2030004.3               | 102.57716<br>99.67881  |             |
|                                                                  | Ni            |          | 60         |                         | 101.00551              |             |
|                                                                  | As            |          | 75         | 248254.1                | 99.40523               |             |
| j :                                                              | Se            |          | 77         | 23866                   | 98.9002                |             |
|                                                                  | Se            |          | 82         | 25377.5                 | 99.41829               |             |
|                                                                  | Rh            |          | 103        | 828519.8                | 100 15 10              | ppb         |
|                                                                  | Cd<br>Cd      |          | 111        | 360771.5                | 103.1542               |             |
|                                                                  | Sb            |          | 114<br>121 | 1228034.1               | 100.97728<br>102.54294 |             |
| ,                                                                | Sb            |          | 123        | 963561.8                | 103.78517              |             |
| •                                                                | Ho            |          | 165        | 1640929.5               |                        | ppb         |
| - I                                                              | Pb            |          | 208        | 7326777.6               | 103.21922              | ppb         |
|                                                                  | Kr            |          | 83         | -23632.4                |                        | mg/L        |
| Method 602                                                       |               | letals S | Summ       | ary Report              |                        |             |
| Sample ID: 1                                                     |               | \ofener  | 40.0       | 011 01:00:40            |                        |             |
| Sample Da<br>Sample De /                                         |               | JCLODEI  | 13, Z      | 011 01.20.40            | 5                      |             |
| Concentratio                                                     |               |          |            |                         |                        |             |
|                                                                  |               | Mass     | 1          | Meas. Intens            | Conc. Mear             | Report Unit |
| >                                                                | Li            |          | 6          | 77904.1                 |                        | ppb         |
|                                                                  | Be            |          | 9          | 12.7                    | -0.03681               |             |
|                                                                  | Sc            |          | 45         | 392299.8                | 47 07004               | ppb         |
|                                                                  | Cr<br>Cr      |          | 52         | 251501.1                | 17.37631               |             |
|                                                                  | Cr<br>Mn      |          | 53<br>55   | 34661.7<br>1009916.6    | 0.28209<br>46.16468    |             |
| ,                                                                | Co            |          | 59         | 54298.4                 | 3.18693                |             |
|                                                                  | Ni            |          | 60         | 67993.4                 | 18,8196                |             |
|                                                                  | As            |          | 75         | 702.6                   | 0.3095                 |             |
| *                                                                | Se            |          | 77         | 472                     | -18.52456              |             |
|                                                                  | Se            |          | 82         | 97.8                    | 0.30394                | ppb         |
|                                                                  | Rh            |          | 103        | 912315.7                |                        | ppb         |
|                                                                  | Cd            |          | 111        | 705.2                   | 0.13553                |             |
|                                                                  | Cd            |          | 114        | -3606.4                 | -0.43629               |             |
|                                                                  | Sb<br>Sb      |          | 121<br>123 | 7728.6<br>5922.2        | 0.55632<br>0.55189     |             |
|                                                                  | Ho            |          | 165        | 1752712                 | 0.00108                | ppb         |
|                                                                  | Pb            |          | 208        | 329113.6                | 4.10564                |             |
|                                                                  | Kr            |          | 83         | -129.7                  |                        | mg/L        |
|                                                                  |               |          |            |                         |                        |             |

| Method 60                                                                                                                                                           |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   | Feikileillei Elakotootor-wo                                                                            |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Method 6020 & 200.8 Metals Summary Report<br>Sample ID: QC Std 1<br>Sample Da Thursday, October 13, 2011 01:28:52                                                   |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
| Sample D                                                                                                                                                            |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
| Concentra                                                                                                                                                           | tion Results<br>Analyte                                                                                                                                                                                                             | Mass      |                                                                                                                                                                                 | Meas. Intens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc. Mea                                                                                                                                                                                         | Report Unit                                                                                            |  |  |  |  |  |  |
| >                                                                                                                                                                   | LI                                                                                                                                                                                                                                  |           | 6                                                                                                                                                                               | 53954,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
| <b> </b> -                                                                                                                                                          | Ве                                                                                                                                                                                                                                  |           | 9                                                                                                                                                                               | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.02237                                                                                                                                                                                          | рро                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Sc                                                                                                                                                                                                                                  |           | 45                                                                                                                                                                              | 292883.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                     | Ct                                                                                                                                                                                                                                  |           | 52                                                                                                                                                                              | 12187.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04169                                                                                                                                                                                           | ppb                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                     | Cr                                                                                                                                                                                                                                  |           | 53                                                                                                                                                                              | 31479.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.50179                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Mn                                                                                                                                                                                                                                  |           | 55                                                                                                                                                                              | 9014.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09971                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
| 1                                                                                                                                                                   | Co                                                                                                                                                                                                                                  |           | 59                                                                                                                                                                              | 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.02221                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| -                                                                                                                                                                   | Ni                                                                                                                                                                                                                                  |           | 60                                                                                                                                                                              | 1484.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05499                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| ļ                                                                                                                                                                   | As                                                                                                                                                                                                                                  |           | 75                                                                                                                                                                              | -671.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.20481                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Se<br>Se                                                                                                                                                                                                                            |           | 77                                                                                                                                                                              | 4998.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.46694                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Rh                                                                                                                                                                                                                                  |           | 82<br>103                                                                                                                                                                       | 17.8<br>859588,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02346                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
| >                                                                                                                                                                   | Cd                                                                                                                                                                                                                                  |           | 111                                                                                                                                                                             | 112.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01677                                                                                                                                                                                          | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Cd                                                                                                                                                                                                                                  |           | 114                                                                                                                                                                             | 209.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
| 1-                                                                                                                                                                  | Sb                                                                                                                                                                                                                                  |           | 121                                                                                                                                                                             | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.01245                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Sb                                                                                                                                                                                                                                  |           | 123                                                                                                                                                                             | 293.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0113                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
| >                                                                                                                                                                   | Ho                                                                                                                                                                                                                                  |           | 165                                                                                                                                                                             | 1523010.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0,0110                                                                                                                                                                                           | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Pb                                                                                                                                                                                                                                  |           | 208                                                                                                                                                                             | 14302.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.02755                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| 1                                                                                                                                                                   | Kr                                                                                                                                                                                                                                  |           | 83                                                                                                                                                                              | 155.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02.00                                                                                                                                                                                           | mg/L                                                                                                   |  |  |  |  |  |  |
| Method 60                                                                                                                                                           | 20 & 200.8                                                                                                                                                                                                                          | Vietals 3 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | QC Std 4                                                                                                                                                                                                                            |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
| Sample Da                                                                                                                                                           | a Thursday,                                                                                                                                                                                                                         | Octobe    | r 13, 2                                                                                                                                                                         | 2011 01:31:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                 |                                                                                                        |  |  |  |  |  |  |
| Sample De                                                                                                                                                           |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
| Concentra                                                                                                                                                           | tion Results                                                                                                                                                                                                                        |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Analyte                                                                                                                                                                                                                             | Mass      |                                                                                                                                                                                 | Meas. Intens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc. Mear                                                                                                                                                                                        | Report Unit                                                                                            |  |  |  |  |  |  |
| >                                                                                                                                                                   | Li                                                                                                                                                                                                                                  |           | 6                                                                                                                                                                               | 5 <b>19</b> 34.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Be                                                                                                                                                                                                                                  |           | 9                                                                                                                                                                               | 38162.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97.43761                                                                                                                                                                                          | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Sc                                                                                                                                                                                                                                  |           | 45                                                                                                                                                                              | 283215.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                     | Cr                                                                                                                                                                                                                                  |           | 52                                                                                                                                                                              | 1110188.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.51042                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| ļ                                                                                                                                                                   | Cr                                                                                                                                                                                                                                  |           | 53                                                                                                                                                                              | 163607.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.03188                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Mn                                                                                                                                                                                                                                  |           | 55                                                                                                                                                                              | 1813085.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94.38054                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| ļ                                                                                                                                                                   | Co                                                                                                                                                                                                                                  |           | 59                                                                                                                                                                              | 1413552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.56936                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| 1                                                                                                                                                                   | Ni                                                                                                                                                                                                                                  |           | 60                                                                                                                                                                              | 304507.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.7378                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
| -                                                                                                                                                                   | As                                                                                                                                                                                                                                  |           | 75                                                                                                                                                                              | 231521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.57223                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| -                                                                                                                                                                   | Se                                                                                                                                                                                                                                  |           | 77                                                                                                                                                                              | 22440.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.31058                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Se                                                                                                                                                                                                                                  |           | 82                                                                                                                                                                              | 23328.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.21121                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |  |
| >                                                                                                                                                                   | Rh<br>Cd                                                                                                                                                                                                                            |           | 103<br>111                                                                                                                                                                      | 804146.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.54087                                                                                                                                                                                         | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Cd                                                                                                                                                                                                                                  |           | 114                                                                                                                                                                             | 815020.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99,9346                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                     | Sb                                                                                                                                                                                                                                  |           | 121                                                                                                                                                                             | 1148581.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.02158                                                                                                                                                                                         |                                                                                                        |  |  |  |  |  |  |
| 1-                                                                                                                                                                  |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 | 1140001.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.02100                                                                                                                                                                                         |                                                                                                        |  |  |  |  |  |  |
| j-                                                                                                                                                                  |                                                                                                                                                                                                                                     |           |                                                                                                                                                                                 | 806305 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103 60291                                                                                                                                                                                         |                                                                                                        |  |  |  |  |  |  |
| -                                                                                                                                                                   | Sb                                                                                                                                                                                                                                  |           | 123                                                                                                                                                                             | 896305.3<br>1527587.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103.69281                                                                                                                                                                                         |                                                                                                        |  |  |  |  |  |  |
| -                                                                                                                                                                   | Sb<br>Ho                                                                                                                                                                                                                            |           | 123<br>165                                                                                                                                                                      | 1527587.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
| -                                                                                                                                                                   | Sb<br>Ho<br>Pb                                                                                                                                                                                                                      |           | 123<br>165<br>208                                                                                                                                                               | 1527587.6<br>6780757.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   | ppb<br>ppb                                                                                             |  |  |  |  |  |  |
| -<br> ><br> -                                                                                                                                                       | Sb<br>Ho<br>Pb<br>Kr                                                                                                                                                                                                                | vietais ( | 123<br>165<br>208<br>83                                                                                                                                                         | 1527587.6<br>6780757.7<br>-22427.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | ppb                                                                                                    |  |  |  |  |  |  |
| -<br> ><br> -<br>Method 60                                                                                                                                          | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 M                                                                                                                                                                                                | vietais S | 123<br>165<br>208<br>83                                                                                                                                                         | 1527587.6<br>6780757.7<br>-22427.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | ppb<br>ppb                                                                                             |  |  |  |  |  |  |
| -<br> ><br> -<br>Method 60<br>Sample ID:                                                                                                                            | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 M<br>QC STD 3                                                                                                                                                                                    |           | 123<br>165<br>208<br>83<br>Summ                                                                                                                                                 | 1527587.6<br>6780757.7<br>-22427.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.58095                                                                                                                                                                                         | ppb<br>ppb                                                                                             |  |  |  |  |  |  |
| -<br> ><br> -<br>Method 60<br>Sample ID:                                                                                                                            | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 M<br>QC STD 3<br>Thursday, 0                                                                                                                                                                     |           | 123<br>165<br>208<br>83<br>Summ                                                                                                                                                 | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.58095                                                                                                                                                                                         | ppb<br>ppb                                                                                             |  |  |  |  |  |  |
| -<br> ><br> -<br>Method 60<br>Sample ID:<br>Sample Da<br>Sample De                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 M<br>: QC STD 3<br>i Thursday, 0<br>escription:<br>tion Results                                                                                                                                  | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2                                                                                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.58095<br>7                                                                                                                                                                                    | ppb<br>ppb<br>mg/L                                                                                     |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample Da<br>Sample De<br>Concentrat                                                                                                 | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 M<br>C STD 3<br>Thursday, 4<br>escription:<br>tion Results<br>Analyte                                                                                                                            |           | 123<br>165<br>208<br>83<br>Summ<br>13, 2                                                                                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.58095<br>7                                                                                                                                                                                    | ppb<br>ppb<br>mg/L<br>Report Unit                                                                      |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample Da<br>Sample De<br>Concentral                                                                                                 | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 Å<br>C STD 3<br>Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li                                                                                                                        | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2                                                                                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.58095<br>7<br>Conc. Mear                                                                                                                                                                      | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb                                                               |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>cQC STD 3<br>Thursday, 4<br>scription:<br>tion Results<br>Analyte<br>Li<br>Be                                                                                                               | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9                                                                                                                              | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.58095<br>7                                                                                                                                                                                    | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb                                                        |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample Da<br>Sample De<br>Concentral                                                                                                 | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>: QC STD 3<br>: Thursday, 4<br>sscription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc                                                                                                     | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45                                                                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.58095<br>7<br>Conc. Mear<br>217.41417                                                                                                                                                         | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb                                                 |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>QC STD 3<br>Thursday,<br>escription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr                                                                                                     | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52                                                                                                                  | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965                                                                                                                                            | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb                                          |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>QC STD 3<br>or Thursday, (<br>ascription:<br>tion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr                                                                                          | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53                                                                                                            | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829                                                                                                                                | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                            |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 Å<br>QC STD 3<br>Thursday, (<br>scription:<br>tion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn                                                                                  | October   | 123<br>165<br>208<br>83<br>50mm<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55                                                                                                      | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:43<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281                                                                                                                   | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb                     |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>QC STD 3<br>Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co                                                                             | October   | 123<br>165<br>208<br>83<br>50mm<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>55<br>59                                                                                          | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:43<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486                                                                                                      | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb       |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -                                                                                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200 8 f<br>c QC STD 3<br>r Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni                                                                   | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60                                                                                          | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379                                                                                         | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentral<br> -<br> -<br> -<br> -<br> -                                                                                | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200 & 10<br>C STD 3<br>Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As                                                           | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75                                                                                    | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192                                                                             | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> -<br> -<br> -<br> -                                                                                      | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>C QC STD 3<br>Thursday, (<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se                                                        | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77                                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>234.5192<br>240.593                                                      | Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp                       |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample Da<br>Sample Da<br>Sample De<br>Concentrat<br> -<br> -<br> -<br> -<br> -<br> -<br> -                                                        | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>QC STD 3<br>or Thursday, (<br>escription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Se                                                | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>9<br>45<br>52<br>55<br>55<br>55<br>59<br>60<br>75<br>77<br>82                                                             | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1<br>48860.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192                                                                             | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> ><br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -                                | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>c QC STD 3<br>r Thursday, (<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Se<br>Rh                                           | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77<br>82<br>103                                                                 | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>011 12:24:4<br>011 12:24:4<br>011 12:24:4<br>011 12:24:4<br>011 12:24:4<br>011 12:24:4<br>011 12:24:4<br>012:24:4<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>013:24<br>015<br>0100000000000000000000000000000000                                  | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625                                                     | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample Da<br>Sample Da<br>Sample De<br>Concentrat<br> -<br> -<br> -<br> -<br> -<br> -<br> -                                                        | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200 & N<br>: QC STD 3<br>: Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Cr<br>Mn<br>Cc<br>Ni<br>As<br>Se<br>Rh<br>Cd                                     | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111                                                          | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1<br>48860.9<br>694651.2<br>734878.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022                                        | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br> -<br>Sample De<br>Concentrat<br> ><br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -                                  | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>c QC STD 3<br>r Thursday, 4<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Rh<br>Cd<br>Cd                         | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111                                                     | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1<br>48860.9<br>694651.2<br>734878.9<br>1724666.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022<br>244.74432                           | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br> -<br>Sample ID:<br>Sample De<br>Concentrat<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -                          | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>QC STD 3<br>Thursday, 4<br>sscription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Rh<br>Cd<br>Cd<br>Sb                           | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111<br>114<br>121                                                                        | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1<br>48860.9<br>694651.2<br>734878.9<br>1724666.3<br>2509356.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022<br>244.74432<br>248.05798              | Ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample D2<br>Sample D2<br>Sample D2<br>Concentrat<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -                    | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>GC STD 3<br>Thursday, (<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Rh<br>Cd<br>Cd<br>Sb<br>Sb                            | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111<br>114<br>121                                            | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>Meas. Intens<br>46838.9<br>76728.8<br>248770.3<br>2369842.1<br>320465.7<br>3716422.1<br>2982968.1<br>616951.8<br>490870<br>43740.1<br>48860.9<br>694651.2<br>734878.9<br>1724666.3<br>2509356.8<br>1909272.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022<br>244.74432                           | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br> -<br> -<br> Sample Da<br>Sample Da<br>Sample Da<br>Concentrat<br> ><br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> - | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 f<br>c QC STD 3<br>r Thursday, (<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Se<br>Rh<br>Cd<br>Cd<br>Cd<br>Sb<br>Sb<br>Ho | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111<br>114<br>121<br>123<br>165 | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>200802<br>2011 12:24:4<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200902<br>200802<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>2009000<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200900000000 | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022<br>244.74432<br>248.05798<br>243.30932 | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |
| -<br> ><br> -<br>Sample D2<br>Sample D2<br>Sample D2<br>Concentrat<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -<br> -                    | Sb<br>Ho<br>Pb<br>Kr<br>20 & 200.8 ft<br>GC STD 3<br>Thursday, (<br>scription:<br>ion Results<br>Analyte<br>Li<br>Be<br>Sc<br>Cr<br>Cr<br>Cr<br>Mn<br>Co<br>Ni<br>As<br>Se<br>Rh<br>Cd<br>Cd<br>Sb<br>Sb                            | October   | 123<br>165<br>208<br>83<br>Summ<br>13, 2<br>6<br>9<br>45<br>52<br>53<br>55<br>59<br>60<br>75<br>77<br>82<br>103<br>111<br>114<br>121                                            | 1527587.6<br>6780757.7<br>-22427.1<br>ary Report<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>2011 12:24:4<br>200802<br>2011 12:24:4<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200802<br>200902<br>200802<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>2009000<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200902<br>200900000000 | 102.58095<br>7<br>Conc. Mear<br>217.41417<br>225.06965<br>240.0829<br>224.41281<br>233.62486<br>229.80379<br>234.5192<br>240.593<br>228.38625<br>250.79022<br>244.74432<br>248.05798              | ppb<br>ppb<br>mg/L<br>Report Unit<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>ppb<br>pp |  |  |  |  |  |  |

| PerkinElmer ELAN 6100 ICP-MS |              |            |            |                      |                      |             |
|------------------------------|--------------|------------|------------|----------------------|----------------------|-------------|
|                              | 20 & 200.8   | Vietais :  | Summ       | ary Report           |                      |             |
|                              | QC STD 5     | Odebe      | - 10 -     | 044 40.00.54         |                      |             |
| Sample Da                    |              | Octobe     | r 13, 2    | 2011 12:26:56        | 5                    |             |
| •                            | tion Results |            |            |                      |                      |             |
|                              | Analyte      | Mass       |            | Meas. Intens         | Conc. Mear           | Report Unit |
| >                            | Li           |            | 6          | 50269.5              |                      | ppb         |
| -                            | Be           |            | 9<br>45    | 16220.5              | 42.77165             | · · · .     |
| -                            | Sc<br>Cr     |            | 40<br>52   | 262128.6<br>517143.9 | 44.74795             | ppb         |
|                              | Cr           |            | 53         | 109088.2             | 61.13269             |             |
| i i                          | Mn           |            | 55         | 780949.7             | 43.34076             | ••          |
|                              | Co           |            | 59         | 627519.9             | 45.36285             |             |
|                              | Ni           |            | 60         | 135129.2             | 46.12101             |             |
|                              | As<br>Se     |            | 75<br>77   | 105335.8<br>14355.7  | 46.54046 58.73929    |             |
|                              | Se           |            | 82         | 10265.4              | 44.29341             |             |
| >                            | Rh           |            | 103        | 750889.6             |                      | ppb         |
| i                            | Cd           |            | 111        | 157314.8             | 49.66526             |             |
| -                            | Cd           |            | 114        | 372286.3             | 48.84121             |             |
| -                            | Sb<br>Sb     |            | 121<br>123 | 529122.1<br>408512.2 | 49.49288<br>49.29171 |             |
| >                            | Ho           |            | 165        | 1464152.8            | 40.20111             | ppb         |
| -                            | Pb           |            | 208        | 3198402.5            | 50.38188             |             |
|                              | Kr           |            | 83         | 211.6                |                      | mg/L        |
|                              | 20 & 200.8   | Vietals    | Summ       | ary Report           |                      |             |
| •                            | : 17506-1fh  | Octoba     | - 12 0     | 011 12-20-07         | 7                    |             |
| Sample Da                    |              | OCIODE     | 110,2      | 2011 12:29:07        |                      |             |
| •                            | tion Results |            |            |                      |                      |             |
|                              | Analyte      | Mass       |            | Meas. Intens         | Сопс. Меа            | Report Unit |
| >                            | Li           |            | 6          | 51680.6              |                      | ppb         |
| -                            | Be           |            | 9          | 18.3                 | -0.01088             | ••.         |
| -                            | Sc<br>Cr     |            | 45<br>52   | 290733.2<br>323246.1 | 26.87466             | ppb         |
|                              | Cr           |            | 53         | 86118.7              | 42.03684             |             |
|                              | Mn           |            | 55         | 155568,6             | 8,13346              |             |
|                              | Co           |            | 59         | 9025.5               | 0.58712              | ••          |
|                              | Ni           |            | 60         | 368817.5             | 123.48205            |             |
|                              | As           |            | 75         | 7281                 | 3.18996              |             |
|                              | Se<br>Se     |            | 77<br>82   | 14479.5<br>10813.8   | 57.27107<br>45.49438 |             |
| >                            | Rh           |            | 103        | 771069.2             | 40,40400             | ppb         |
|                              | Cd           |            | 111        | 872.4                | 0.22063              |             |
| - i-                         | Cd           |            | 114        | 1787.1               | 0.18265              |             |
| -                            | Sb           |            | 121        | 3646.7               | 0.2802               |             |
|                              | Sb<br>Ho     |            | 123<br>165 | 2794.1<br>1523153.9  | 0.27887              | · · .       |
| ><br> -                      | Pb           |            | 208        | 100351.2             | 1.28166              | ppb         |
| 1                            | Kr           |            | 83         | -378.8               |                      | mg/L        |
| Method 60                    | 20 & 200.8 I | Vietals \$ | Summ       | ary Report           |                      | •           |
|                              | 17506-2fh    |            |            |                      | _                    |             |
|                              |              | Octobe     | r 13, 2    | 2011 12:31:17        | 7                    |             |
| Sample De                    | ion Results  |            |            |                      |                      |             |
| 0011001110                   | Analyte      | Mass       |            | Meas. Intens         | Conc. Meai           | Report Unit |
| >                            | Li           |            | 6          | 51040.1              |                      | ppb         |
| -                            | Be           |            | 9          | 14.7                 | -0,02025             |             |
| -                            | Sc           |            | 45         | 287807.8             | 0.00470              | ppb         |
|                              | Cr<br>Cr     |            | 52<br>53   | 89158.8<br>58378.5   | 6.88478              |             |
|                              | Mn           |            | 55         | 60035                | 22.32757<br>2.98047  |             |
|                              | Co           |            | 59         | 3913.5               | 0.23054              |             |
|                              | Ni           |            | 60         | 204512.9             | 69.30402             |             |
| [                            | As           |            | 75         | 5638.4               | 2.51592              | ppb         |
| 1                            | Se           |            | 77         | 12613.1              | 48,30204             | ••          |
|                              | Se           |            | 82<br>103  | 8455.5<br>759069,6   | 36.11084             | • • •       |
| >                            | Rh<br>Cd     |            | 103        | 427.1                | 0.08561              | ppb<br>ppb  |
| <br> -                       | Cd           |            | 114        | 685.7                | 0.04347              |             |
| i-                           | Sb           |            | 121        | 17297.8              | 1.51797              | ppb         |
| 1                            | Sb           |            | 123        | 13486.7              | 1.52972              | ppb         |
| >                            | Ho           |            | 165        | 1514625.2            | 0 77704              | ppb         |
| -                            | Pb<br>Kr     |            | 208<br>83  | 66809.6<br>-291.5    | 0.77731              | ppb<br>mg/L |
|                              | 151          |            | 00         | -201.0               |                      | nyr         |

| PerkinElmer ELAN 6100 ICP-MS              |               |            |                    |                         |                      |                 |
|-------------------------------------------|---------------|------------|--------------------|-------------------------|----------------------|-----------------|
| Method 6020 & 200.8 Metals Summary Report |               |            |                    |                         |                      |                 |
| Sample ID: 17506-2fh                      |               |            |                    |                         |                      |                 |
|                                           | a Thursday,   | Octobe     | r 13, 2            | 2011 12:33:2            | 6                    |                 |
| Sample D                                  |               |            |                    |                         |                      |                 |
| Concentra                                 | tion Results  | Mana       |                    |                         |                      | - Dement I Inst |
|                                           | Analyte       | Mass       |                    |                         | Conc. Mea            | r Report Unit   |
| >                                         | Li<br>Be      |            | 6<br>9             | 51160.5<br>11.3         | 0 00997              | ppb             |
| -<br> _                                   | Sc            |            | 45                 | 289728.5                | -0.02887             | ppb             |
| 1                                         | Cr            |            | 52                 | 89206.3                 | 6,80408              |                 |
| í                                         | Cr            |            | 53                 | 63510.4                 | 25.66313             |                 |
| i                                         | Mn            |            | 55                 | 62278                   | 3.06838              |                 |
| i                                         | Co            |            | 59                 | 3882.5                  | 0.2256               | ppb             |
|                                           | Ni            |            | 60                 | 207381.1                | 69.55632             | ppb             |
| 1                                         | As            |            | 75                 | 5886.6                  | 2,59082              |                 |
|                                           | Se            |            | 77                 | 13477.3                 | 52.23959             |                 |
|                                           | Se            |            | 82                 | 8415.4                  | 35.55571             | · · · .         |
| >                                         | Rh<br>Cd      |            | 103<br>111         | 767100.1<br>429.4       | 0 09507              | ppb             |
| -                                         | Cd            |            | 114                | 429.4                   | 0.08507              |                 |
| 1                                         | Sb            |            | 121                | 17258.7                 | 1.4948               |                 |
| 1                                         | Sb            |            | 123                | 13502.5                 | 1.51154              |                 |
| >                                         | Ho            |            | 165                | 1533491.1               |                      | ppb             |
| i-                                        | Pb            |            | 208                | 66490.8                 | 0.75953              |                 |
|                                           | Kr            |            | 83                 | -296.6                  |                      | mg/L            |
| Method 60                                 | 20 & 200.8    | vietais 3  | Summ               | ary Report              |                      | -               |
| Sample ID                                 |               |            |                    |                         |                      |                 |
|                                           | Thursday, (   | Octobe     | r 13, 2            | 2011 12:39:5            | 6                    |                 |
| Sample De                                 |               |            |                    |                         |                      |                 |
| Concentra                                 | tion Results  |            |                    |                         | ~ .u                 |                 |
|                                           | Analyte       | Mass       |                    | Meas. Intens<br>47948.9 | Conc. Meai           |                 |
| ><br> -                                   | Li<br>Be      |            | 6<br>9             | 4/948.9                 | 0.02507              | ppb             |
| -<br> -                                   | Sc            |            | 45                 | 248615.8                | -0.03597             | ррб             |
|                                           | Cr            |            | 52                 | 12162.8                 | 0.18255              |                 |
| 1                                         | Cr            |            | 53                 | 57388.2                 | 22.31983             | ••              |
| i                                         | Mn            |            | 55                 | 1964.2                  | -0.23026             |                 |
| i                                         | Co            |            | 59                 | 259.3                   | -0.0307              | ••              |
|                                           | Ni            |            | 60                 | 245.3                   | -0.41733             |                 |
| 1                                         | As            |            | 75                 | 177.6                   | 0.13277              |                 |
|                                           | Se            |            | 77                 | 7081.8                  | 18.72587             |                 |
|                                           | Se            |            | 82                 | -10.7                   | -0.09065             | · · .           |
| >                                         | Rh            |            | 103                | 745992.8                |                      | ppb             |
|                                           | Cd            |            | 111                | 47.7                    | -0.03255             |                 |
| -                                         | Cd<br>Sb      |            | 114<br>121         | 98.6<br>167.3           | -0.03259             |                 |
| -<br>                                     | Sb            |            | 123                | 133                     | -0.03207<br>-0.02889 |                 |
| >                                         | Ho            |            | 165                | 1426976,8               | -0.02009             | ppb             |
| [-                                        | Pb            |            | 208                | 3285.9                  | -0.1918              |                 |
| '                                         | Kr            |            | 83                 | 154.4                   | 0.1070               | mg/L            |
| Method 60                                 | 20 & 200.8 N  | /letals \$ |                    |                         |                      |                 |
| Sample ID:                                | QC Std 4      |            |                    | •                       |                      |                 |
| Sample Da                                 | r Thursday, C | October    | <sup>-</sup> 13, 2 | 011 12:42:0             | 6                    |                 |
| Sample De                                 |               |            |                    |                         |                      |                 |
| Concentral                                | ion Results   |            |                    |                         |                      |                 |
| la.                                       | Analyte       | Mass       |                    | Meas. Intens            | Conc. Mear           |                 |
| >                                         | Li            |            | 6                  | 48429.6                 | 00 40400             | ppb             |
| -                                         | Be<br>Sc      |            | 9<br>45            | 32276.6                 | 88.40463             |                 |
| -                                         | Cr            |            | 45<br>52           | 246210.5<br>1010846,8   | 89.20768             | ppb             |
| 1                                         | Cr            |            | 53                 |                         | 114.01259            |                 |
| 1                                         | Mn            |            | 55                 | 1565371.9               | 88.1065              |                 |
| i                                         | Co            |            | 59                 | 1286279.4               | 94.02893             | · · .           |
| i                                         | Ni            |            | 60                 | 276358.9                | 95.86765             |                 |
| i                                         | As            |            | 75                 | 217251.7                | 96.9796              |                 |
| i                                         | Se            |            | 77                 | 24026                   | 113.51249            |                 |
| 1                                         | Se            |            | 82                 | 21860.5                 | 95.45273             |                 |
| >                                         | Rh            |            | 103                | 743102.9                |                      | ppb             |
|                                           | Cd            |            | 111                | 318803.2                | 101.6516             | ppb             |
| -                                         | Cd            |            | 114                | 743760.1                | 98,5989              |                 |
| -                                         | Sb            |            | 121                | 1057865.1               | 101.47808            |                 |
|                                           | Sb            |            | 123                | 824460.5                | 102.01256            |                 |
| >                                         | Ho<br>Pb      |            | 165<br>208         | 1428350.8               | 102 02544            | ppb             |
| -                                         | Kr            |            | 208<br>83          | 6360165.7<br>-20095.2   | 102.93511            | · ·             |
|                                           | e si          |            | 00                 | -20000.Z                |                      | mg/L            |

| PerkinElmer ELAN 6100 ICP-MS                  |             |             |                       |                     |              |  |
|-----------------------------------------------|-------------|-------------|-----------------------|---------------------|--------------|--|
| Method 6020 & 200.8 Metals Summary Report     |             |             |                       |                     |              |  |
| Sample ID: 17506-3bh                          |             |             |                       |                     |              |  |
| Sample Da Thursday, October 13, 2011 12:44:17 |             |             |                       |                     |              |  |
| Sample De Ai                                  |             |             |                       |                     |              |  |
| Concentration                                 |             |             |                       | o                   |              |  |
|                                               |             | lass        | Meas. Intens          | Conc. Mear          |              |  |
| > Li                                          |             | 6<br>9      | 71237.3               | 0.00400             | ppb          |  |
| - B(<br> - S(                                 | -           | 9<br>45     | 18.3<br>368790.1      | -0.02422            | ppb          |  |
|                                               |             | 52          | 140469.7              | 9.42874             |              |  |
| i c                                           |             | 53          | 42666.1               | 5.5966              |              |  |
| M                                             |             | 55          | 469231.3              | 21.52299            |              |  |
| C                                             |             | 59          | 32787                 | 1.92808             |              |  |
| j Ni                                          | i           | 60          | 62566.3               | 17.49272            | ppb          |  |
| A:                                            | S           | 75          | 8138.4                | 3.04843             | ppb          |  |
| Se                                            | -           | 77          | 23027.1               | 85.39363            |              |  |
| S                                             |             | 82          | 24984.3               | 89.96492            |              |  |
| > R                                           |             | 103         | 901062.6              |                     | ppb          |  |
|                                               |             | 111         | 919.1                 | 0.19417             |              |  |
| - Ci                                          |             | 114         | 1410.6                | 0.10928             |              |  |
| - SI                                          |             | 121<br>123  | 13085.8<br>10164.2    | 1.02536<br>1.03006  |              |  |
| > H                                           |             | 123         | 1671516.3             | 1.03006             | ppb          |  |
| - Pi                                          |             | 208         | 415697.4              | 5.51733             |              |  |
| K                                             |             | 83          | -597.6                | 0.01700             | mg/L         |  |
| Method 6020                                   |             |             |                       |                     |              |  |
| Sample ID: 17                                 |             |             |                       |                     |              |  |
| Sample Da Th                                  | nursday, Oc | tober 13, 3 | 2011 12:46:2          | 7                   |              |  |
| Sample De Ai                                  | rtech       |             |                       |                     |              |  |
| Concentration                                 | Results     |             |                       |                     |              |  |
|                                               |             | ass         | Meas. Intens          | Conc. Mear          | Report Unit  |  |
| }> Li                                         |             | 6           | 67025.9               |                     | ppb          |  |
| - Be                                          |             | 9           | 17818.1               | 35.21617            |              |  |
| - So                                          |             | 45          | 343198.1              |                     | ppb          |  |
| CI                                            |             | 52          | 753417.2              | 58.94591            | • •          |  |
| Cr                                            |             | 53          | 112084.2              | 54.87445            |              |  |
| M                                             |             | 55<br>59    | 1418463.3<br>779383.6 | 71.10973            |              |  |
| I Ni                                          |             | 60          | 216749.4              | 50.77429<br>66.8775 |              |  |
| As As                                         |             | 75          | 107948.6              | 42,96339            |              |  |
| Se Se                                         |             | 77          | 29952.4               |                     |              |  |
| Se                                            |             | 82          | 33909.6               | 131.8936            | •••          |  |
| > RI                                          |             | 103         | 834131.6              |                     | ppb          |  |
| i Co                                          | d           | 111         | 130868.8              | 37.13656            |              |  |
| - Co                                          | d           | 114         | 304931.6              | 35.97278            | ppb          |  |
| - St                                          | <b>)</b>    | 121         | 487521.2              | 41.25177            | ppb          |  |
| St                                            | 2           | 123         | 379574                | 41.43268            | ppb          |  |
| > Ho                                          |             | 165         | 1617786.9             |                     | ppb          |  |
| - Pk                                          |             | 208         | 3623115.4             | 51.65686            |              |  |
| Kr                                            |             | 83          | 487.7                 |                     | mg/L         |  |
| Method 6020                                   |             | tals Sumn   | nary Report           |                     |              |  |
| Sample ID: Q                                  |             |             | 0044 40:40:0          | ~                   |              |  |
| Sample Da Th<br>Sample Descr                  |             | lober 13, i | 2011 12.40.3          | 8                   |              |  |
| Concentration                                 |             |             |                       |                     |              |  |
|                                               |             | ass         | Meas. Intens          | Conc. Mear          | Report Linit |  |
| > Li                                          | anyto in    | 6           | 46959.8               | Conto. Micar        | ppb          |  |
| - Be                                          | •           | 9           | 7                     | -0.03856            |              |  |
| - Sc                                          |             | 45          | 232772.8              |                     | ppb          |  |
| Cr                                            |             | 52          | 11616.8               | 0.19063             |              |  |
| Cr                                            |             | 53          | 45401.9               | 15.11488            |              |  |
| Mi                                            | n           | 55          | 1907.2                | -0.22747            | ppb          |  |
| Cc                                            | >           | 59          | 229                   | -0.03197            | ppb          |  |
| Ni                                            |             | 60          | 192                   | -0.43208            | ppb          |  |
| As                                            |             | 75          | -56.2                 | 0.02616             |              |  |
| Se                                            |             | 77          | 6530.7                | 17.6491             |              |  |
| Se Se                                         |             | 82          | -58.7                 | -0.31358            | · · .        |  |
| > Rh                                          |             | 103         | 706963                |                     | ppb          |  |
|                                               |             | 111         | 39,3                  | -0.03452            |              |  |
| - Co                                          |             | 114         | 65                    | -0.03655            |              |  |
| - St                                          |             | 121         | 133                   | -0.03476            |              |  |
| > Ho                                          |             | 123<br>165  | 96.1<br>1358472.9     | -0.03298            |              |  |
| - Pb                                          |             | 208         | 2776.5                | -0.19783            | ppb          |  |
| ,- FL<br>Kr                                   |             | 200         | 194                   |                     | mg/L         |  |
|                                               |             |             | 191                   |                     |              |  |

#### PerkinElmer ELAN 6100 ICP-MS

| PerkinElmer ELAN 6100 ICP-MS                                     |                            |                   |            |                         |                      |               |  |
|------------------------------------------------------------------|----------------------------|-------------------|------------|-------------------------|----------------------|---------------|--|
| Method 6020 & 200.8 Metals Summary Report<br>Sample ID: QC Std 4 |                            |                   |            |                         |                      |               |  |
|                                                                  | a Thursday,<br>escription: | Octobe            | er 13, 1   | 2011 12:50:4            | 8                    |               |  |
|                                                                  | ation Results              |                   |            |                         |                      |               |  |
|                                                                  | Analyte                    | Mass              |            | Meas. Intens            | Conc. Mea            | r Report Unit |  |
| >                                                                | Li                         |                   | 6          | 48726.7                 |                      | ppb           |  |
| -<br> -                                                          | Be<br>Sc                   |                   | 9<br>45    | 31756<br>238128.6       | 86.45943             | ppp           |  |
| 1                                                                | Cr                         |                   | 52         | 988625.9                | 90.58156             |               |  |
| í                                                                | Cr                         |                   | 53         | 164259.4                | 108.6835             |               |  |
|                                                                  | Mn                         |                   | 55         | 1495126                 | 87.35352             |               |  |
|                                                                  | CO                         |                   | 59         | 1251662.5               | 94.98627             |               |  |
| 1                                                                | Ni<br>As                   |                   | 60<br>75   | 269089<br>211172.6      | 96.90934<br>97.85425 |               |  |
| i -                                                              | Se                         |                   | 77         |                         | 112.28162            |               |  |
| i                                                                | Se                         |                   | 82         | 21087.5                 | 95.58056             |               |  |
| >                                                                | Rh                         |                   | 103        | 715843.4                |                      | ppb           |  |
|                                                                  | Cd<br>Cd                   |                   | 111<br>114 |                         | 101.15433            |               |  |
| -<br> -                                                          | Sb                         |                   | 121        | 709700<br>1014304.4     | 97.66502             |               |  |
| i i                                                              | Sb                         |                   | 123        | 792407.1                |                      |               |  |
| >                                                                | Но                         |                   | 165        | 1364714                 |                      | ppb           |  |
| -                                                                | Pb                         |                   | 208        | 6090739.3               | 103.16738            |               |  |
| Mothod 6(                                                        | Kr<br>)20 & 200.8 I        | viotale :         | 83<br>Summ | -19252.3                |                      | mg/L          |  |
|                                                                  | ): 17506-3bh               |                   | Summ       |                         |                      |               |  |
|                                                                  |                            |                   | r 13, 2    | 2011 13:19:26           | 3                    |               |  |
| Sample D                                                         | e Airtech                  |                   |            |                         |                      |               |  |
| Concentra                                                        | tion Results               |                   |            |                         | o 14                 |               |  |
| >                                                                | Analyte<br>Li              | Mass              | 6          | Meas. Intens<br>73902.9 | Conc. Mear           | ppb           |  |
| }-                                                               | Be                         |                   | 9          | 9.3                     | -0.04056             |               |  |
| j-                                                               | Sc                         |                   | 45         | 374248.9                |                      | ppb           |  |
| Ì                                                                | Cr                         |                   | 52         | 68134.2                 | 4.04207              |               |  |
|                                                                  | Cr                         |                   | 53         | 52938.4                 | 11.94283             | ••            |  |
|                                                                  | Mn<br>Co                   |                   | 55<br>59   | 198814.6                | 8.78792              |               |  |
|                                                                  | Ni                         |                   | 60         | 13451<br>26556.2        | 0.75141<br>7.02294   |               |  |
|                                                                  | As                         |                   | 75         | 3729,1                  | 1.40732              |               |  |
| i i                                                              | Se                         |                   | 77         | 14742                   | 46.55332             |               |  |
|                                                                  | Se                         |                   | 82         | 10155.5                 | 36.06713             | 1 C           |  |
| >                                                                | Rh<br>Cd                   |                   | 103        | 912707.2                | 0.06446              | ppb           |  |
|                                                                  | Cd                         |                   | 111<br>114 | 430.4<br>492.4          | 0.06446<br>0.00768   |               |  |
| -                                                                | Sb                         |                   | 121        | 6215.5                  | 0,45338              |               |  |
| i                                                                | Sb                         |                   | 123        | 4707.7                  | 0.44457              |               |  |
| >                                                                | Ho                         |                   | 165        | 1700205.1               |                      | ppb           |  |
| -                                                                | Pb<br>Kr                   |                   | 208        | 179666.1                | 2.20132              |               |  |
| Method 60                                                        | 10 & 200.8 M               | <i>li</i> otole ( | 83<br>Summ | -131.1<br>arv Report    |                      | mg/L          |  |
|                                                                  | : 17506-3bh                | notorio           | Junni      | ary report              |                      |               |  |
|                                                                  |                            | Octobe            | r 13, 2    | 011 13:21:36            | 3                    |               |  |
| Sample De                                                        |                            |                   |            |                         |                      |               |  |
| Concentra                                                        | tion Results<br>Analyte    | Mass              |            | Meas. Intens            | Cone Maar            | Report Linit  |  |
| >                                                                | Li                         | Magg              | 6          | vieas. miens<br>76715   | Gong, Migal          | ppb           |  |
| ]-                                                               | Be                         |                   | 9          | 23413.3                 | 40.53688             | ppb           |  |
| i-                                                               | Sc                         |                   | 45         | 386830.1                |                      | ppb           |  |
|                                                                  | Cr                         |                   | 52         | 779998.1                | 53.4356              |               |  |
|                                                                  | Cr                         |                   | 53<br>55   | 130175.9                | 56.30394             |               |  |
|                                                                  | Mn<br>Co                   |                   | 55<br>59   | 1323199.9<br>860193.4   | 58.0701<br>49.09603  |               |  |
|                                                                  | Ni                         |                   | 60         | 204919.7                | 55.32581             |               |  |
| i                                                                | As                         |                   | 75         | 123963.8                | 43.29492             |               |  |
| 1                                                                | Se                         |                   | 77         | 24180.5                 | 84.88617             | ppb           |  |
|                                                                  | Se                         |                   | 82         | 22725.4                 | 77.57364             |               |  |
| >                                                                | Rh                         |                   | 103        | 950514.5                |                      | ppb           |  |
| <br> -                                                           | Cd<br>Cd                   |                   | 111<br>114 | 165782.4<br>390029.2    | 41.29447<br>40.39017 |               |  |
| -                                                                | Sb                         |                   | 121        | 582696,9                | 44.85924             |               |  |
| i                                                                | Sb                         |                   | 123        | 453312.7                | 45.01507             | ppb           |  |
| >                                                                | Но                         |                   | 165        | 1779458.7               |                      | ppb           |  |
| -                                                                | Pb                         |                   | 208        | 3787228.5               | 49.06147             |               |  |
|                                                                  | Kr                         |                   | 83         | -66.4                   |                      | mg/L          |  |

#### PerkinElmer ELAN 6100 ICP-MS

| PerkinElmer ELAN 6100 ICP-MS |                                               |          |           |                     |                      |               |  |  |
|------------------------------|-----------------------------------------------|----------|-----------|---------------------|----------------------|---------------|--|--|
| Method (                     | Method 6020 & 200.8 Metals Summary Report     |          |           |                     |                      |               |  |  |
|                              | Sample ID: QC Std 1                           |          |           |                     |                      |               |  |  |
| Sample                       | Sample Da Thursday, October 13, 2011 13:23:47 |          |           |                     |                      |               |  |  |
| Sample                       | Description:                                  |          |           |                     |                      |               |  |  |
| Concent                      | ration Results                                | 3        |           |                     |                      |               |  |  |
|                              | Analyte                                       | Mass     |           | Meas. Intens        | Conc. Mea            | r Report Unit |  |  |
| >                            | Li                                            |          | 6         | 48107.9             |                      | ppb           |  |  |
| -                            | Be                                            |          | 9         | 25.7                | 0.01084              |               |  |  |
| -                            | Sc                                            |          | 45        | 243403.5            |                      | ppb           |  |  |
|                              | Cr                                            |          | 52        | 12303.7             | 0.2406               |               |  |  |
| ļ                            | Cr                                            |          | 53        | 42554.2             |                      |               |  |  |
| 1                            | Mn<br>Co                                      |          | 55        | 2923.9              |                      |               |  |  |
|                              | Ni                                            |          | 59<br>60  | 734.1<br>318.7      | 0.00501              |               |  |  |
|                              | As                                            |          | 75        | -407.1              | -0.38877<br>-0.13087 |               |  |  |
| -                            | Se                                            |          | 77        | 6224.8              |                      |               |  |  |
| ł                            | Se                                            |          | 82        | -7.5                | -0.08199             |               |  |  |
| >                            | Rh                                            |          | 103       | 719305.3            | -0.00100             | ppb           |  |  |
| i i                          | Cd                                            |          | 111       | 149,9               | 0.00105              |               |  |  |
| -                            | Cd                                            |          | 114       | 313.8               | -0.00303             |               |  |  |
| -                            | Sb                                            |          | 121       | 464.7               | 0.00028              |               |  |  |
| Ì                            | Sb                                            |          | 123       | 358.1               | 0.00246              |               |  |  |
| >                            | Ho                                            |          | 165       | 1335752.9           |                      | ppb           |  |  |
| i-                           | Pb                                            |          | 208       | 5018.3              | -0.15739             |               |  |  |
| •                            | Kr                                            |          | 83        | 170.2               |                      | mg/L          |  |  |
| Method 6                     | 6020 & 200.8                                  | Metals   | Summ      | ary Report          |                      |               |  |  |
| Sample I                     | ID: QC Std 4                                  |          |           |                     |                      |               |  |  |
|                              | Da Thursday,                                  | Octobe   | r 13, 2   | 2011 13:25:5        | 7                    |               |  |  |
| Sample I                     | Description:                                  |          |           |                     |                      |               |  |  |
| Concentr                     | ration Results                                | i        |           |                     |                      |               |  |  |
|                              | Analyte                                       | Mass     |           | Meas. Intens        | Conc. Mea            | r Report Unit |  |  |
| >                            | Li                                            |          | 6         | 50781.9             |                      | ppb           |  |  |
| -                            | Be                                            |          | 9         | 33595               | 87.78555             | ppb           |  |  |
| -                            | Sc                                            |          | 45        | 244258              |                      | ppb           |  |  |
|                              | Сг                                            |          | 52        | 1003766.4           |                      |               |  |  |
|                              | Cr                                            |          | 53        |                     | 107.20816            |               |  |  |
|                              | Mn                                            |          | 55        | 1552206.9           | 90.85411             |               |  |  |
|                              | Co                                            |          | 59        | 1252517.8           |                      |               |  |  |
|                              | Ni                                            |          | 60        | 269512              | 97.23505             |               |  |  |
|                              | As                                            |          | 75        | 209448.1            | 97.22165             |               |  |  |
|                              | Se                                            |          | 77        |                     | 110.34638            |               |  |  |
|                              | Se<br>Rh                                      |          | 82<br>103 | 20687.7<br>714502.7 | 93.94623             | · · .         |  |  |
| >                            | Cd                                            |          | 111       |                     | 101.91995            | ppb           |  |  |
| <br> _                       | Cd                                            |          | 114       | 719291.4            | 99.2021              |               |  |  |
| -<br>                        | Sb                                            |          | 121       |                     | 102.62213            |               |  |  |
| -                            | Sb                                            |          | 123       |                     | 104.10733            |               |  |  |
| >                            | Ho                                            |          | 165       | 1386525.8           | 104.10700            | ppb           |  |  |
| -                            | Pb                                            |          | 208       |                     | 101.83927            |               |  |  |
| I.                           | Kr                                            |          | 83        | -19481.6            |                      | mg/L          |  |  |
| Method 6                     | 3020 & 200.8                                  | Metals 3 |           |                     |                      |               |  |  |
|                              | D: 17506-3fh                                  |          |           |                     |                      |               |  |  |
|                              | Da Thursday,                                  |          | r 13, 2   | 011 13:32:4         | 5                    |               |  |  |
|                              | De Airtech                                    |          |           |                     |                      |               |  |  |
| Concentr                     | ation Results                                 |          |           |                     |                      |               |  |  |
|                              | Analyte                                       | Mass     | I         | Meas. Intens        | Conc. Mean           | Report Unit   |  |  |
| >                            | Li                                            |          | 6         | 50826.7             |                      | ppb           |  |  |
| -                            | Be                                            |          | 9         | 12.7                | -0.02506             | ppb           |  |  |
| -                            | Sc                                            |          | 45        | 271899.9            |                      | ppb           |  |  |
|                              | Cr                                            |          | 52        | 60186.9             | 4.41686              | ppb           |  |  |
|                              | Cr                                            |          | 53        | 62291.2             | 25.7028              | ppb           |  |  |
|                              | Mn                                            |          | 55        | 43116.1             | 2.07346              |               |  |  |
|                              | Co                                            |          | 59        | 2546.4              | 0.13481              |               |  |  |
|                              | Ni                                            |          | 60        | 69607               | 23,53031             |               |  |  |
| 1                            | As                                            |          | 75        | 6067.5              | 2.725                |               |  |  |
|                              | Se                                            |          | 77        | 16180.4             | 68.6844              |               |  |  |
|                              | Se                                            |          | 82        | 10278.3             | 44.29013             | · · · .       |  |  |
| >                            | Rh                                            |          | 103       | 751389.9            |                      | ppb           |  |  |
|                              | Cd                                            |          | 111       | 354.9               | 0.06618              |               |  |  |
| -                            | Cd                                            |          | 114       | 492.3               | 0.01876              |               |  |  |
| 1-                           | Sb                                            |          | 121       | 2496.7              | 0.19577              |               |  |  |
|                              | Sb                                            |          | 123       | 1950.8              | 0.20071              |               |  |  |
| >                            | Ho<br>Pb                                      |          | 165       | 1402214.7           | 0 70450              | ppb           |  |  |
| -                            | PD<br>Kr                                      |          | 208<br>83 | 57279.1<br>-180.5   | 0.70159              |               |  |  |
|                              | TNI                                           |          | 93        | -100.5              |                      | mg/L          |  |  |

#### PerkinElmer ELAN 6100 ICP-MS

|                                               |                    | 10010   |              | ,                   |              |              |  |
|-----------------------------------------------|--------------------|---------|--------------|---------------------|--------------|--------------|--|
| Method 60                                     | 20 & 200.8         | Metals  | Summ         | nary Report         |              |              |  |
|                                               | : 17506-3fh        |         |              |                     |              |              |  |
| Sample Da Thursday, October 13, 2011 13:34:55 |                    |         |              |                     |              |              |  |
| Sample De                                     |                    |         |              |                     |              |              |  |
| Concentra                                     | tion Results       |         |              |                     |              |              |  |
| le.                                           | Analyte            | Mass    | ~            | Meas. Intens        | Conc. Mea    |              |  |
| >                                             | Li<br>D-           |         | 6            | 52608.4             | 10 11711     | ppb          |  |
| -                                             | Be<br>Sc           |         | 9<br>45      | 16052.2<br>273078.5 | 40.44744     |              |  |
| -                                             | Cr                 |         | 52           | 552786.6            | 47.16734     | ppb          |  |
|                                               | Cr                 |         | 53           | 118658.8            | 67.0168      |              |  |
| ļ                                             | Mn                 |         | 55           | 839602.5            | 45.91811     |              |  |
|                                               | Co                 |         | 59           | 637308.7            | 45.39291     |              |  |
| i                                             | Ni                 |         | 60           | 202237.9            | 68.25925     |              |  |
| i -                                           | As                 |         | 75           | 104747.3            | 45.63314     |              |  |
| i i                                           | Se                 |         | 77           | 23012.8             |              |              |  |
| i                                             | Se                 |         | 82           | 20044.8             | 85.40995     | ppb          |  |
| i>                                            | Rh                 |         | 103          | 761700.3            |              | ppb          |  |
| 1 I                                           | Cd                 |         | 111          | 145473.8            | 45.22411     | ppb          |  |
| -                                             | Cd                 |         | 114          | 339081              | 43.81232     | ppb          |  |
| -                                             | Sb                 |         | 121          | 494804.4            | 48.21152     |              |  |
| 1                                             | Sb                 |         | 123          | 384212.3            | 48.28222     | ppb          |  |
| >                                             | Но                 |         | 165          | 1405322             |              | ppb          |  |
| -                                             | Pb                 |         | 208          | 2988448.2           | 49.05599     | ••           |  |
|                                               | Kr                 |         | 83           | 161.8               |              | mg/L         |  |
|                                               | 20 & 200.8         | Vietais | Summ         | ary Report          |              |              |  |
| Sample ID                                     |                    | 0-4-6-  | - 40 0       | 044 40 40 5         | 0            |              |  |
| Sample Da                                     |                    | UCIODE  | r 13, ⊿      | 2011 13:48:5        | 5            |              |  |
|                                               | tion Results       |         |              |                     |              |              |  |
| CONCEINA                                      | Analyte            | Mass    |              | Meas. Intens        | Conc Mea     | Report Linit |  |
| >                                             | Li                 | 1416133 | 6            | 50569.4             | CONC. MICA   | ppb          |  |
| -                                             | Be                 |         | 9            | 10                  | -0.03211     |              |  |
| i-                                            | Sc                 |         | 45           | 257469.7            |              | ppb          |  |
| i                                             | Cr                 |         | 52           | 12698.2             | 0.21253      |              |  |
| i                                             | Cr                 |         | 53           | 52037.6             | 17.63769     |              |  |
| i                                             | Mn                 |         | 55           |                     |              | ppb          |  |
| i                                             | Co                 |         | 59           |                     |              | ppb          |  |
| Ì                                             | Ni                 |         | 60           | 188.3               | -0.43813     |              |  |
| Ì                                             | As                 |         | 75           | -92,6               | 0.01372      | ppb          |  |
|                                               | Se                 |         | 77           |                     |              | ppb          |  |
| 1                                             | Se                 |         | 82           | -44.3               | -0.23404     | ppb          |  |
| >                                             | Rh                 |         | 103          | 757894.1            |              | ppb          |  |
| 1                                             | Cd                 |         | 111          | 68.4                | -0.02627     |              |  |
| -                                             | Cd                 |         | 114          | 151.4               | -0.0259      |              |  |
|                                               | Sb                 |         | 121          |                     |              | ppb          |  |
|                                               | Sb                 |         | 123          |                     |              | ppb          |  |
| >                                             | Ho                 |         | 165          | 1414282.9           |              | ppb          |  |
| -                                             | Pb                 |         | 208          | 3804                | -0.18288     |              |  |
| Mathad 60                                     | Kr<br>20 P 200 P M |         | 83           | 145.8<br>Donort     |              | mg/L         |  |
| Sample ID:                                    | 20 & 200.8 M       | vietais | Summ         | агу кероп           |              |              |  |
|                                               |                    | October | 12 3         | 011 13:50:44        | 4            |              |  |
| Sample De                                     |                    | JUDDE   | 10, 2        | .011 13.00.4-       | t            |              |  |
|                                               | ion Results        |         |              |                     |              |              |  |
| Consentratio                                  | Analyte            | Mass    |              | Meas. Intens        | Conc Mear    | Report Unit  |  |
| >                                             | Li                 | maoo    | 6            | 51384.4             | 00110. 11104 | ppb          |  |
| -                                             | Be                 |         | 9            | 35209.1             | 90.90214     |              |  |
| -                                             | Sc                 |         | 45           | 262046.2            |              | ppb          |  |
| i -                                           | Cr                 |         | 52           | 1074987.7           | 95.17893     |              |  |
| -                                             | Cr                 |         | 53           |                     | 113.47037    |              |  |
| 1                                             | Mn                 |         | 55           |                     |              | ppb          |  |
| i -                                           | Co                 |         | 59           |                     |              | ppb          |  |
| i                                             | Ni                 |         | 60           | 282737.5            | 98.31516     |              |  |
| i -                                           | As                 |         | 75           | 222348              | 99.49284     |              |  |
| i                                             | Se                 |         | 77           |                     |              | ppb          |  |
| i                                             | Se                 |         | 82           | 22054.5             | 96.53694     |              |  |
| >                                             | Rh                 |         | 103          | 741990.7            |              | ppb          |  |
| i                                             | Cd                 |         | 111          |                     | 100.84204    |              |  |
| i-                                            | Cd                 |         | 1 <b>1</b> 4 | 745010              | 98.89302     |              |  |
| j-                                            | Sb                 |         | 121          |                     |              | ppb          |  |
| Í                                             | Sb                 |         | 123          |                     |              | ppb          |  |
| >                                             | Но                 |         | 165          | 1421865.7           |              | ppb          |  |
| -                                             | Pb                 |         | 208          | 6311729.7           | 102.64248    |              |  |
|                                               | Kr                 |         | 83           | -20282.5            |              | mg/L         |  |
|                                               |                    |         |              |                     |              |              |  |



# Ohio Lumex Spectrometer (Mercury) Analytical Report

Performed for Big Rivers Wilson Plant Project No. 36-18 October 10, 2011

1\_ Analyst:

Michael Ogletree

Reviewer:\_\_ C Patrick Clark P.F.

## **Table of Contents**

| PROJECT SUMMARY                    | .2 |
|------------------------------------|----|
| General                            | .2 |
| Analytical Equipment               | 2  |
| Condition of Samples When Received | 2  |
| Methodology.                       | 2  |
| 2A/2C                              |    |
|                                    |    |

### APPENDIX

Results Calibration Data Chain of Custody



### **Project Summary**

#### General

| Project Information              |                |
|----------------------------------|----------------|
| Date Received                    | 10/4/2011      |
| Analytical Protocol              | EPA Method 30B |
| Total Number of Samples Received | 6              |
| Total Number of Blanks Received  | NA             |

### **Analytical Equipment**

| Equipment Information       | Manufacturer | Model   | Serial No. |
|-----------------------------|--------------|---------|------------|
| Zeeman Mercury Spectrometer | Ohio Lumex   | RA-915+ | 1283       |

| Parameters       | Conditions   |
|------------------|--------------|
| Oven Temperature | 585° Celsius |
| Flow Rate        | 2 LPM        |

### **Condition of Samples When Received**

Samples were received for analysis in good condition. The samples are summarized in the table below:

| Sample Description | Trap ID | Spike (ng) |
|--------------------|---------|------------|
| Run 1A             | 95038   | None       |
| Run 1B             | 82431   | 20         |
| Run 2A             | 99020   | None       |
| Run 2B             | 82434   | 20         |
| Run 3A             | 99127   | None       |
| Run 3B             | 82446   | 20         |

### Methodology

All samples were analyzed according to the EPA Method 30B procedures found in 40 CFR Part 60 Appendix A.

## QA/QC

The mercury calibration curve was generated using seven (7) calibration standards. The standards were prepared by using a micro pipette to transfer a known amount of NIST traceable mercury standards to a bed of activated carbon.



| Concentration (µg/ml) | Volume(µl) | Final Hg (ng) |
|-----------------------|------------|---------------|
| 0.1                   | 20         | 2             |
| 0.1                   | 50         | 5             |
| 0.1                   | 100        | 10            |
| 1                     | 25         | 25            |
| 1                     | 50         | 50            |
| 1                     | 100        | 100           |
| 10                    | 25         | 250           |
| 10                    | 50         | 500           |

The preparation of the mercury standards used for this project is detailed in the table below.

An independent calibration standard was analyzed with the mercury calibration standards.

A 250 ng standard was run periodically throughout analytical procedure as a continuing calibration check.

All standards where supplied by Ohio Lumex, Twinsburg, Ohio 44087. Concentrations and lot number are detailed in the table below.

| Concentration (µg/ml)    | Lot No.      |
|--------------------------|--------------|
| 0.10                     | C2-HG02067   |
| 1.00                     | B2-MEB264072 |
| 10.00                    | B2-HG02061   |
| 10.00 (secondary source) | B2-MEB264073 |



## Appendix

Includes the following:

- Results
- Calibration Data
- Chain of Custody



**Results** 

Includes the following:

Mercury Results

.



Analysis Date: 10/5/11 Analyst: MO Analyzer: Ohio Lumex

| Sample Parameters           | Run 1       | Run 2       | Run 3       |
|-----------------------------|-------------|-------------|-------------|
| Oxidized Front Half (area)  | 945         | 1,200       | 806         |
| Oxidized Back Half (area)   | 0           | 191         | 0           |
| Elemental Front Half (area) | 3,970       | 5,040       | 4,250       |
| Elemental Back Half (area)  | 0           | 0           | 0           |
| RESULTS                     |             |             |             |
| Oxidized Front Half (ng)    | 5.17        | 6 56        | 4.41        |
| Oxidized Back Half (ng)     | 0 00        | 0.890       | 0.00        |
| Oxidized Breakthrough (%)   | 0.0         | 11.9        | 0.0         |
| Total Oxidized (ng)         | 5.17        | 7.45        | 4.41        |
| Elemental Front Half (ng)   | 21.7        | 27.6        | 23.2        |
| Elemental Back Half (ng)    | 0.00        | 0.00        | 0.00        |
| Elemental Breakthrough (%)  | 0.0         | 0.0         | 0.0         |
| Total Elemental (ng)        | 21.7        | 27.6        | 23.2        |
| Total Mercury (ng)          | 26.9        | 35.0        | 27.7        |
|                             | 0           | 0           |             |
| Sample Parameters           | Run 1 Spike | Run 2 Spike | Run 3 Spike |
| Front Half (area)           | 8,110       | 9,134       | 9,560       |
| Back Half (area)            | 0           | 10          | 0           |
| RESULTS                     |             |             |             |
| Front Half (ng)             | 44_4        | 50.0        | 52,3        |
| Back Half (ng)              | 0.00        | 0.0466      | 0.00        |
| Breakthrough (%)            | 0.00        | 0.0932      | 0.00        |
| Total Mercury (ng)          | 44.4        | 50.0        | 52.3        |

Calibration Data

Includes the following:

- Mercury Standards
- Mercury Calibration Curves



#### **GENERAL INFORMATION**

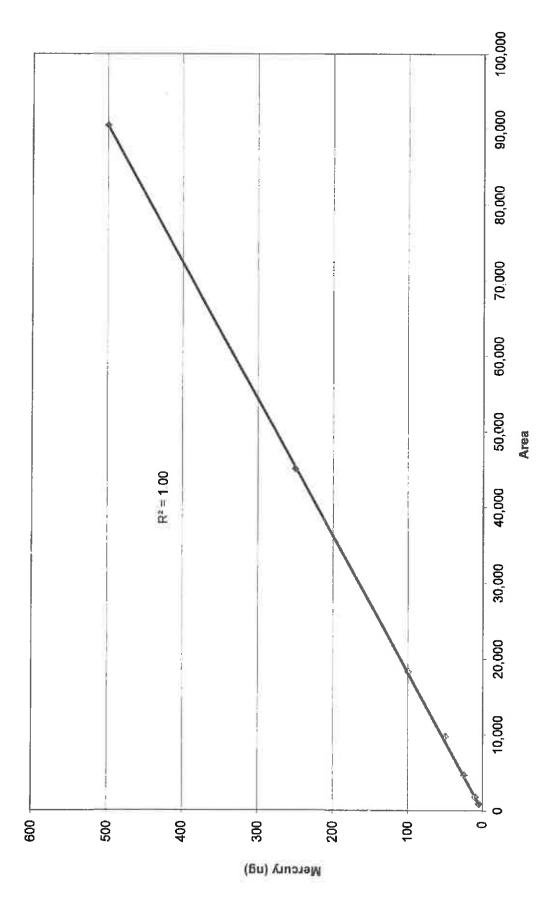
Date: 10/5/11 Analyzer: Ohio Lumex Analyst: MO

#### **INITIAL CALIBRATION**

| Standard                | Amount       | Response     | RF               | Calculated |           |        |
|-------------------------|--------------|--------------|------------------|------------|-----------|--------|
| Number                  | (ng)         | (area)       | (ng/area)        | Value (ng) | Error (%) | Valid? |
| 1                       | 5            | 882          | 0.00567          | 4.82       | -3.5      | Yes    |
| 2                       | 10           | 1,790        | 0 00559          | 9.8        | -2.1      | Yes    |
| 3                       | 25           | 4,670        | 0.00535          | 25.5       | 2.2       | Yes    |
| 4                       | 50           | 9,750        | 0.00513          | 53.3       | 6.6       | Yes    |
| 5                       | 100          | 18,300       | 0.00546          | 100.1      | 0.1       | Yes    |
| 6                       | 250          | 45,000       | 0.00556          | 246        | -1.6      | Yes    |
| 7                       | 500          | 90,500       | 0.00552          | 495        | -1.0      | Yes    |
| Average Re<br>R-Squared | sponse Facto | or (ng/area) | 0.00547<br>1.000 |            |           |        |

#### LOW LEVEL STANDARD - FOR QUANTIFICATION BELOW 5 NG

| Standard | Amount      | Response | RF        | Calculated |           |        |
|----------|-------------|----------|-----------|------------|-----------|--------|
| Number   | <u>(ng)</u> | (area)   | (ng/area) | Value (ng) | Error (%) | Valid? |
| NA       | 2           | 429      | 0.00466   | 2          | 17.3      | NA     |


#### SECOND SOURCE CHECK STANDARD ANALYSIS

| Standard | Amount | Response | RF        | Calculated |           |        |
|----------|--------|----------|-----------|------------|-----------|--------|
| Number   | (ng)   | (area)   | (ng/area) | Value (ng) | Error (%) | Valid? |
| NA       | 250    | 43,700   | 0.00572   | 239        | -4.4      | Yes    |

#### CONTINUING CALIBRATION VERIFICATION STANDARDS

| Standard<br>Number | Amount<br>(ng) | Response<br>(area) | RF<br>(ng/area) | Calculated<br>Value (ng) | Error (%) | Valid? |
|--------------------|----------------|--------------------|-----------------|--------------------------|-----------|--------|
| NA                 | 250            | 44,600             | 0.00561         | 243.91                   | -2.4      | Yes    |
| NA                 | 250            | 44,200             | 0.00566         | 241.72                   | -3.3      | Yes    |
| NA                 | 250            | 44,100             | 0.00567         | <b>241</b> .18           | -3.5      | Yes    |
| NA                 | 250            | 45,400             | 0.00551         | 248.29                   | -0.7      | Yes    |
| NA                 | 250            | 49,500             | 0.00505         | 270.71                   | 8.3       | Yes    |





Chain of Custody

Includes the following:

Field Chain of Custody



|                     |                         | #1.                       | RU-                                   | \ IA                            | -                                  |                               |                            |
|---------------------|-------------------------|---------------------------|---------------------------------------|---------------------------------|------------------------------------|-------------------------------|----------------------------|
|                     | 11/2                    | UMEX                      | Ch                                    | Sorbent T<br>ain of Cu          | stody                              | 1                             |                            |
| Plant               | /Source:                | B=y R.<br>Stack           | ver                                   | Test                            | Location:                          | Stack                         |                            |
| Boile               | r ID:                   | Stack                     |                                       |                                 | ID:                                | 5                             | 9.5038                     |
|                     |                         |                           |                                       |                                 | Trap (A                            | B (Circ                       | le One)                    |
| Δu                  | nspiked                 | Spiked<br>Certified A     | At:<br>curacy ± 10%, Traces           | QA/                             | QC Signature                       | (Trap Maker)                  | H_L                        |
| Estim               | ated Hg                 | in Section 1:             |                                       | ng QA/                          | QC Signature                       | Spiker)                       |                            |
|                     |                         |                           |                                       |                                 | e of Trap: 5<br>st End 9-29        | COIL                          | 240 mm<br>300 mm<br>450 mm |
| Test S<br>(Date     | Start<br>/Time :)       | 1-35-11 La<br>10:59pm (P2 | st Check<br>ss/Eail                   | Te<br>JA (Dat                   | st End 역- 구위<br>e/Time) ( 구구       | -th Lock<br>19-in Pass        | Check                      |
| Date                | Time                    | Duct Temp<br>(°F or °C)   | Sorbent<br>Trap Temp<br>(°F or °C)    | Flow Rate<br>(cc/min)           | Dry Gas Meter<br>Liters Initial    | Dry Gas Meter<br>Liters Final | Total Volume<br>Pulled     |
| 9-29-11             | 12 5im                  | (2)-60                    |                                       | 13                              | 0.00                               | 27.39                         | 27.38                      |
|                     |                         |                           | · · · · · · · · · · · · · · · · · · · |                                 |                                    |                               |                            |
|                     |                         |                           |                                       |                                 |                                    |                               |                            |
|                     |                         |                           |                                       |                                 |                                    |                               |                            |
|                     |                         |                           |                                       |                                 |                                    |                               |                            |
| Total/Av            | /erage                  |                           |                                       |                                 |                                    |                               | -                          |
|                     | 22                      | -17-00                    |                                       | hain of Custo                   | dy                                 |                               |                            |
| Relinquis           | hed by Tech             | : Und                     | m                                     | 2                               |                                    | _ Date: 9-0                   | 19-11                      |
| Received            | by:                     |                           |                                       |                                 |                                    | Date:                         |                            |
| Relinquis           | hed by:                 |                           |                                       |                                 |                                    | Date:                         |                            |
| Received            | for Laborato            | bry by:                   |                                       |                                 |                                    | Date:                         |                            |
| Keep Dry<br>For Ana | ,<br>lysis conta        | act us:                   |                                       |                                 |                                    |                               |                            |
| Ohio Lu<br>Phone 3  | mex Co., 1<br>330-405-0 |                           | na Road Unit<br>5-0847 US 1           | A-3, Twinsbu<br>Foll Free: 888- | rg, OH 44087 U<br>8 <b>76-2611</b> | SA                            |                            |

Deactivated glass and glass wool

|                                                      |                            |                         |                                     | RN                  | $\gamma$ ]        | 15                                 |            |                      |                                                               |
|------------------------------------------------------|----------------------------|-------------------------|-------------------------------------|---------------------|-------------------|------------------------------------|------------|----------------------|---------------------------------------------------------------|
| Оню                                                  | 2                          | <u>IMEX</u>             |                                     | orben<br>ain of     |                   | aps<br>stody)                      |            |                      |                                                               |
| Plant/Sou<br>Boiler ID                               | urce:                      | Biy Ric<br>Stack        | ·                                   |                     | Test              | Location: _<br>ID <u>:</u><br>Trap |            |                      | 82431                                                         |
| Unspi                                                |                            | Certified A             | At: 20/10<br>ccuracy ± 10%. Traceal | ble to NIST         | QA/0              | QC Signatu                         | re (Trap M | aker)                |                                                               |
| Estimated<br>Sampled                                 |                            | _in Section 1:          |                                     | ng                  |                   |                                    | 240mm      | COIL<br>AGS<br>300mm | Long 1 <sup>st</sup> Bed<br>Long 3 <sup>rd</sup> Bed<br>450mm |
| Test Start<br>(Date/Tin                              | <u>ne :)</u>               | 0:59 Les<br>9-28-11 Pr  | ak-Check<br>ass/Fail                |                     | Tes               | st End <i>12</i><br>2/Time) 9      | :09        |                      | Check<br>Fail                                                 |
|                                                      | ime                        | Duct Temp<br>(°F or °C) | Sorbent<br>Trap Temp<br>(°F or °C)  | Flow<br>(cc/n       |                   | Dry Gas Me<br>Liters Initia        | -          | Gas Meter            | Total Volume<br>Pulled                                        |
|                                                      | 59<br>197                  | 199.66                  |                                     | 1                   | 3                 | 0.0                                | 2          | 7.56                 | 37.56                                                         |
|                                                      |                            |                         |                                     |                     |                   |                                    |            |                      |                                                               |
| Total/Averag                                         | ge                         |                         | Cł                                  | nain of             | Custo             |                                    |            |                      |                                                               |
| Relinquished t                                       | -                          |                         | Jul                                 | ·                   |                   |                                    | I          | Date: 7- 6           | 79-)                                                          |
|                                                      |                            |                         |                                     |                     |                   |                                    | 1          | Date                 |                                                               |
| Received for L                                       |                            | erv hv                  |                                     |                     |                   |                                    |            | Date:                |                                                               |
| Keep Dry<br>For Analysis<br>Ohio Lumex<br>Phone 330- | s conta<br>Co., ]<br>405-0 |                         | nna Road Unit<br>05-0847 US 7       | A-3, Tu<br>Foll Fre | winsbu<br>e: 888- | rg, OH 4408<br>• <b>876-2611</b>   |            | Date:                |                                                               |

Deactivated glass and glass wool

|                                                    | <i>.</i>               | -<br>#1                                                     |                                    | kun'                   | AK                                    |                               |                        |
|----------------------------------------------------|------------------------|-------------------------------------------------------------|------------------------------------|------------------------|---------------------------------------|-------------------------------|------------------------|
| Ohi                                                | 12                     | MEX                                                         |                                    | Sorbent T<br>ain of Cu | A                                     |                               |                        |
| Plant/S                                            | ource:                 | Big Ric                                                     | rers DBC                           | <u>~ils_</u> Test      | Location:                             | Stack                         |                        |
|                                                    | ID:                    |                                                             | ÷                                  |                        | ID <u>: 0</u> 1                       | - 99020                       |                        |
|                                                    | spiked                 | Spiked<br>Certified A                                       | At:<br>coursey ± 10%, Traces       |                        | Trap <u>A</u><br>QC Signature         | B (Circ                       | -7                     |
| Estima                                             | ted Hg                 |                                                             |                                    |                        | QC Signature                          | Spiker)                       | s 2                    |
| Sample<br>Test Sta                                 | art                    | 7-29-11 Le                                                  | )<br>ak Check                      |                        | of Trap:<br>st End 9-2/               | $COIL AGS 185 mm S_{pec}/c$   |                        |
| (Date/T                                            | <u>'ime :)</u>         |                                                             | ass/Fail                           |                        | e/Time) 3:"                           | 15 Pass/                      |                        |
| Date                                               | Time                   | Duct Temp<br>(°F or °C)                                     | Sorbent<br>Trap Temp<br>(°F or °C) | Flow Rate<br>(cc/min)  | Dry Gas Meter<br>Liters Initial       | Dry Gas Meter<br>Liters Final | Total Volume<br>Pulled |
| 9-29-11                                            |                        | 121-33                                                      |                                    | .3                     | 0.00                                  | 2769                          | 27.69                  |
| ·                                                  | ·                      |                                                             |                                    |                        |                                       |                               |                        |
| -                                                  |                        |                                                             |                                    |                        |                                       |                               |                        |
|                                                    |                        |                                                             |                                    |                        |                                       |                               |                        |
| Total/Aver                                         | age                    |                                                             | l                                  |                        |                                       |                               |                        |
|                                                    |                        |                                                             |                                    | ain of Custo           | ody                                   | 1                             |                        |
| Relinquished                                       | d by Tech.             |                                                             | 5 Som                              | R                      | · · · · · · · · · · · · · · · · · · · | Date:                         | -29-11                 |
| Received by                                        | ·                      |                                                             |                                    |                        |                                       | Date:                         |                        |
| Relinquished                                       |                        |                                                             |                                    |                        |                                       | Date:                         |                        |
| Received for<br>Make sure all o<br>loss in sorbeat | of your same           | ry by:<br>bling conditions preven<br>ould be prevented at a | nt moisture condensat              | ion in the trap media  | . Molature condensation               | Date:                         | kthrough and spike     |
| For Analys<br>Ohio Lume                            | sis conta<br>ex Co., L | ct us:                                                      | ma Road Unit                       | A-3. Twinchin          | ማ በዛ 44097 11                         | Best Bettere Copre            |                        |

.....

Impregnated Activated Carbon - Refer to MSDS Deactivated glass and glass wool

|                                                                                                               |                                    | fun                   | OB                              |                               |                                                               |
|---------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------------------------------------|
| OHION                                                                                                         | Se                                 | orbent Ti             | ans                             |                               |                                                               |
| UMEX                                                                                                          |                                    | in of Cu              |                                 |                               |                                                               |
| Plant/Source: Bis River                                                                                       | s DB cal                           | 500 Test              | Location: <                     | te ol                         |                                                               |
| Plant/Source: <u>Big River</u><br>Boiler ID: <u>Stran</u>                                                     | n(K                                | <u>or</u> Tran        |                                 | en                            |                                                               |
|                                                                                                               | <u></u>                            | 11ap                  | ID <u>: OI</u><br>Trap <u>A</u> | $\frac{B}{Circl}$             | le One)                                                       |
| Unspiked K Spik                                                                                               | ted At: 2005                       |                       | QC Signature (                  | $\smile$                      |                                                               |
| Estimated Hg in Section 1                                                                                     | ·                                  | ng QA/0               | QC Signature                    | Spiker)                       | der                                                           |
|                                                                                                               | -S<br>Leak Check<br>Pass/Fail      |                       |                                 | 40mm                          | Long 1 <sup>st</sup> Bed<br>Long 3 <sup>rd</sup> Bed<br>450mm |
| Test Start $\mathcal{I}:(\mathcal{S})$<br>(Date/Time :) $9\mathcal{I}\mathcal{H}$                             | Leak-Check                         |                       | ,                               | 2<br>(& Leak                  | Check                                                         |
| (Date/Time :) 939-11                                                                                          | Pass/Fail                          |                       | e/Time) 9-2                     | 29-11 Pass/                   |                                                               |
| Date Time Duct Temp<br>(°F or °C)                                                                             | Sorbent<br>Trap Temp<br>(°F or °C) | Flow Rate<br>(cc/min) | Dry Gas Meter<br>Liters Initial | Dry Gas Meter<br>Liters Final | Total Volume<br>Pulled                                        |
| 9-29-4 121.33                                                                                                 |                                    | د ،                   | 6.0                             | 27.17                         | 27.17                                                         |
|                                                                                                               |                                    |                       |                                 |                               |                                                               |
|                                                                                                               | ;                                  |                       |                                 |                               |                                                               |
|                                                                                                               |                                    |                       |                                 |                               |                                                               |
|                                                                                                               |                                    |                       |                                 |                               |                                                               |
| Total/Average                                                                                                 |                                    |                       |                                 |                               |                                                               |
|                                                                                                               |                                    | najn of Custo         | ody                             |                               |                                                               |
| Relinquished by Tech :                                                                                        | Jak                                |                       |                                 | Date:                         | )9-1/                                                         |
| Received by:                                                                                                  |                                    |                       |                                 | Date:                         |                                                               |
| Relinquished by:                                                                                              |                                    |                       |                                 | Date:                         |                                                               |
| Received for Laboratory by                                                                                    |                                    |                       | ·                               | Date:                         |                                                               |
| Keep Dry<br>For Analysis contact us:<br>Ohio Lumex Co., Inc. 9263 Ra<br>Phone 320 405 0827 Fem 220            | avenna Road Unit                   | A-3, Twinsbu          | rg, OH 44087 U                  | USA                           | Addition of the                                               |
| Phone 330-405-0837 Fax 330<br>Impregnated Activated Carbon – Refer to MSD<br>Deactivated glass and glass wool |                                    | 1011 Free: 888        | -876-2611                       |                               |                                                               |

|                | *.                       |                         |                                    | Ron                          | 3A                              |                               |                             |
|----------------|--------------------------|-------------------------|------------------------------------|------------------------------|---------------------------------|-------------------------------|-----------------------------|
| Он             | M                        | IMEX                    | S                                  | orbent T<br>ain of Cu        |                                 |                               |                             |
|                | <i>.</i>                 |                         |                                    |                              | -                               |                               |                             |
| Plant/         | Source:                  | DBig Rive               | 45 DBG                             | ilso Test                    | Location:                       | Stack                         |                             |
| Boiler         | :D:                      | Stack                   |                                    | Trap                         | ID <u>: 0I</u>                  | .99/27                        |                             |
|                |                          | _                       |                                    |                              | Trap <u>A</u>                   | B (Circl                      | e One)                      |
|                | spiked                   | Spiked<br>Certified A   | At:<br>curacy ± 10%, Traces        | ble to NIST                  | QC Signature (                  | Trap Maker                    | 1/ic                        |
| Estim          | ated Hg                  | in Section 1:           |                                    | ng QA/0                      | QC Signature (                  | Spiker)                       | 2 X                         |
| Sampl          | ed Bv:                   | ()                      |                                    | Tyme                         | of Trap:                        | COIL<br>AGS<br>185 mm         | 240 mm<br>300 mm<br>450 mm  |
| Test S         | tart S                   | 109 Le                  | ak Check                           | Te                           | st End 6:3<br>e/Time) 9-2       | 9 Leak                        | Check                       |
| Date           | Time                     | Duct Temp<br>(°F or °C) | Sorbent<br>Trap Temp<br>(°F or °C) | Flow Rate<br>(cc/min)        | Dry Gas Meter<br>Liters Initial | Dry Gas Meter<br>Liters Final | Total Volume<br>Pulled      |
| 9-27-1         |                          | 121-66                  |                                    | .3                           | 0.00                            | 27.21                         | 27.55                       |
| 14             |                          |                         |                                    |                              |                                 |                               |                             |
|                |                          |                         |                                    | •                            |                                 |                               |                             |
|                |                          |                         |                                    |                              |                                 |                               |                             |
|                |                          |                         |                                    |                              |                                 |                               |                             |
| Total/Av       | erage                    |                         |                                    |                              |                                 |                               |                             |
|                |                          | 00                      | ,Cl                                | hain of Custo                | dy                              | I                             |                             |
| Relinquisl     | ied by Tech              | John                    | - 22                               | X                            |                                 | Date: 4                       | 29-4                        |
| Received 1     | by:                      |                         |                                    |                              |                                 | Date:                         |                             |
| Relinquish     | ed by:                   |                         |                                    |                              |                                 | Date:                         |                             |
| Received f     | for Laborato             | ry by:                  | it moisture condense               | tion in the tran medi        | . Moisture condensatio          | Date:                         | althrough and with          |
| iuss III sorge | nt timpe and a           | nome pe preventen at i  | ull coste.                         | and an owner of the solution |                                 | Best Before Serve             |                             |
|                | ysis conta<br>nex Co., I |                         | nna Road Unit                      | A-3. Twinshu                 | rg. OH 44087 1                  |                               | anaanti (* 1964) - <u>A</u> |

Ohio Lumex Co., Inc. 9263 Ravenna Road Unit A-3, Twinsburg, OH 44087 USA Phone 330-405-0837 Fax 330-405-0847 US Toll Free: 888-876-2611

|                                                                     |                                 | 12                                  | uns                            | B                               |                               |                                                               |
|---------------------------------------------------------------------|---------------------------------|-------------------------------------|--------------------------------|---------------------------------|-------------------------------|---------------------------------------------------------------|
| Оню                                                                 | JMEX                            |                                     | orbent Tr<br>ain of Cu         | -                               |                               |                                                               |
| Plant/Source:                                                       | Big Ri                          | vers DBL                            | ils_ Test                      | Location:                       | Steel                         |                                                               |
| Boiler ID:                                                          | Stack                           |                                     | Trap                           | ID <u>: 0I</u>                  |                               | 82446                                                         |
| Unspiked                                                            | Spiked<br>Certified A           | At: 20 Mc.<br>ccuracy ± 10%, Traces | QA/                            | Trap <u>A</u><br>QC Signature ( |                               | le One)                                                       |
| Estimated Hg                                                        | in Section 1:                   |                                     | <u>ng</u> QA/                  | QC Signature (                  | Spiker)CC                     | lin                                                           |
| Sampled By:_                                                        | 0.5                             |                                     | Туре                           | □2<br>e of Trap: <u>30/3</u>    | 40mm COIL                     | Long 1 <sup>st</sup> Bed<br>Long 3 <sup>rd</sup> Bed<br>450mm |
| Test Start<br>(Date/Time :)                                         | C NO IL                         | ak Check<br>ass/Fail                |                                | st End 6.3<br>e/Time) 9-9       | f Leak                        | Check<br>Fail                                                 |
| Date Time                                                           | Duct Temp<br>(°F or °C)         | Sorbent<br>Trap Temp<br>(°F or °C)  | Flow Rate<br>(cc/min)          | Dry Gas Meter<br>Liters Initial | Dry Gas Meter<br>Liters Final | Total Volume<br>Pulled                                        |
| 9-27-1 6:39                                                         | 121.60                          | v.                                  | 13                             | oa                              | 27-28                         | 27.55                                                         |
|                                                                     |                                 |                                     |                                |                                 |                               |                                                               |
|                                                                     |                                 |                                     |                                |                                 |                               |                                                               |
|                                                                     |                                 |                                     |                                |                                 |                               |                                                               |
| Total/Average                                                       |                                 |                                     |                                |                                 |                               |                                                               |
|                                                                     |                                 |                                     | hain) of Custo                 |                                 |                               |                                                               |
| Relinquished by Tecl                                                | . Dow                           | 2 Sn                                |                                |                                 | Date: 9-)                     | 9-11                                                          |
| Received by:                                                        |                                 | 00                                  |                                |                                 | Date                          |                                                               |
| Relinquished by:                                                    |                                 |                                     |                                |                                 | Date:<br>Date:                |                                                               |
| Received for Laborat                                                | ory by:                         |                                     |                                |                                 | Date:                         |                                                               |
| Keep Dry<br>For Analysis cont<br>Ohio Lumex Co.,<br>Phone 330-405-0 | Inc. 9263 Rave<br>837 Fax 330-4 | nna Road Unit<br>05-0847 US 7       | A-3, Twinsbu<br>Foll Free: 888 | rg, OH 44087 (<br>-876-2611     |                               | Sector Sur                                                    |
| Impregnated Activated Car                                           | oon - Keter to MSDS             |                                     |                                |                                 |                               |                                                               |

Deactivated glass and glass wool

| Nº 1810 | / of                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes              |          |     |  |  |  |  |                 | cisi And loo |                |           |                            |              |           |            |
|---------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----|--|--|--|--|-----------------|--------------|----------------|-----------|----------------------------|--------------|-----------|------------|
| ł       | Page                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |     |  |  |  |  | Fell 5 1        | 6200         |                |           |                            |              |           |            |
|         | Analysis Requested                | 1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1]<br>1, 10 [1] |                    | XXXX     |     |  |  |  |  | Carrier         | Laboratory   | Contact        | Address   |                            | Phone        | LaX       | Date/Time  |
|         | Stack<br>10-1-11                  | , cd, cr, co, rab, mu, vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Description | amples   |     |  |  |  |  | Relinquished By |              | It with they   | 10/4/11   | dBy                        |              |           |            |
|         | Location<br>Date                  | HAP will be defined as SD, As, Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŝ                  | Coal Sam | 6   |  |  |  |  | Relinqui        | (signature)  | HCiC (printed) | Date/Time | Accepted By                | (initiation) |           | auittianan |
|         | Big Rivers                        | HP will be defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run No. Date       | ~        | 2   |  |  |  |  |                 | ANT WING     | Micheel        |           |                            | カードレ         |           |            |
|         | Project Number<br>Client<br>Diant | The life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID No.             | 12 AM    | 7AM |  |  |  |  | Relinquished By | (signature)  | (printed)      | Date/Time | Accepted By<br>(signature) | (printed)    | Date/Time |            |

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

> AIRTECH Environmental Services Inc.



## G and C COAL ANALYSIS LAB., INC.

1341 HOFFMAN HOLLOW RD. SUMMERVILLE, PA 15864 (814) 849-2559 FAX (814) 849-8878

| RECEIVED FROM:                                  |       | LAB NO.  | 901813   |
|-------------------------------------------------|-------|----------|----------|
| AIRTECH ENVIROMENTAL<br>601A COUNTRY CLUB DRIVE |       | SAMPLED  | 09/29/11 |
| SOLA COUNTRI CLOB DRIVE                         |       | RECEIVED | 10/07/11 |
| BENSONVILLE, IL                                 | 60106 | REPORTED | 11/03/11 |


SAMPLE MARKED: PROJECT #3648 WILSON-RUN 1 12 AM CHLORINE 429 MG/KG DRY (USGS BULLETIN 1823) MERCURY 0.088 MG/KG DRY OR PPM DRY (ASTM 6722) FLUORINE 55 MG/KG DRY (ASTM 3761-96)

|                                                    | AS RECEIVED | DRY BASIS |
|----------------------------------------------------|-------------|-----------|
| % Moisture                                         | 10.07       |           |
| % Ash                                              | 8.32        | 9.25      |
| % Sulfur                                           | 3.70        | 4.11      |
| B.T.U                                              | 11,961      | 13,300    |
| BTU (Moisture-ash free)                            | 14,         | 656       |
| % Volatile Matter                                  | 27.15       | 30.19     |
| <pre>% Fixed Carbon</pre>                          | 54.46       | 60.56     |
| 3.09 Lbs. Sul./mil. BTU<br>6.96 Lbs. Ash./mil. BTU |             |           |

THE ABOVE ANALYTICAL RESULTS WERE OBTAINED FOLLOWING ASTM PROCEDURES.

APPROVED BY

G&C COALAMALYSIS LAB., INC.



## G and C Coal Analysis Lab., Inc.

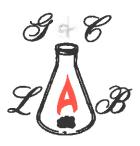
1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

RECEIVED FROM:

AIRTECH ENVIRONMENTAL 601A COUNTRY CLUB DRIVE BENSONVILLE, IL 60106

|      | Lab # !   | 901813   |
|------|-----------|----------|
| Date | Sampled:  | 09/29/11 |
| Date | Received: | 10/07/11 |
| Date | Reported: | 11/03/11 |

SAMPLE MARKED: PROJECT #3648 BIG RIVERS-WILSON RUN #1


## Procedure used following ASTM Method D-5373-02

|                |                | ULTIMATE ANALYSIS |           |  |
|----------------|----------------|-------------------|-----------|--|
|                |                | As Received**     | Dry Basis |  |
|                |                |                   |           |  |
|                | % CARBON       | 67.92             | 75.53     |  |
|                | % HYDROGEN     | 4.07              | 4.53      |  |
|                | % NITROGEN     | 1.29              | 1.43      |  |
| (by difference | % OXYGEN<br>e) | 4.63              | 5.15      |  |
|                | % ASH          | 8.32              | 9.25      |  |
|                | % SULFUR       | 3.70              | 4.11      |  |
|                | % MOISTURE     | 10.07             |           |  |

\*\*Hydrogen and Oxygen do not include the Hydrogen and Oxygen from the Moisture.

| TM procedures. | G & C COAL ANALYSIS LAB., INC. |
|----------------|--------------------------------|
| APPROVED BY_   | manen hen                      |
|                |                                |

The above analytical results were obtained following ASTM procedures.



Received From:

WILSON RUN #1

G and C Coal Analysis Lab., Inc.

1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

| Airtech Environmental                            | Date Sampled:  | 09/29/11 |
|--------------------------------------------------|----------------|----------|
| 601A Country Club Drive<br>Bensonville, IL 60106 | Date Received: | 10/07/11 |
|                                                  | Date Reported: | 11/03/11 |
| Sample Marked:<br>PO# 3648<br>BIG RIVERS         | G&C Lab#       | 901813   |

| 10.07           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9.25            | Procedure Followed: EPA-SW-846,Method 3030B,<br>Acid Digestion of Sediments, Sludges, and Solids                |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8.32            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| OF ASH<br>MG/KG | COAL(DRY)<br>MG/KG                                                                                              | COAL(AS REC)<br>MG/KG                                                                                                                                                                                                                                                                                                                                                                              |  |
| 0.13            | 0.01                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 16.65           | 1.54                                                                                                            | 1.39                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7.18            | 0.66                                                                                                            | 0.60                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 0.49            | 0.05                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 31.23           | 2.89                                                                                                            | 2.60                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 12.29           | 1.14                                                                                                            | 1.02                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 54.43           | 5.03                                                                                                            | 4.53                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 145.43          | 13.45                                                                                                           | 12.10                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 386.95          | 35.79                                                                                                           | 32.19                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 4.30            | 0.40                                                                                                            | 0.36                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                 | 9.25<br>8.32<br>OF ASH<br>MG/KG<br>0.13<br>16.65<br>7.18<br>0.49<br>31.23<br>12.29<br>54.43<br>145.43<br>386.95 | Procedure Followed           9.25         Acid Digestion of S           8.32         COAL(DRY)           MG/KG         MG/KG           0.13         0.01           16.65         1.54           7.18         0.66           0.49         0.05           31.23         2.89           12.29         1.14           54.43         5.03           145.43         13.45           386.95         35.79 |  |

The above analytical results were obtained following ASTM procedures.

G & C COAL ANALYSIS LAB., INC. APPROVED BY.



## G and C COAL ANALYSIS LAB., INC.

1341 HOFFMAN HOLLOW RD. SUMMERVILLE, PA 15864 (814) 849-2559 FAX (814) 849-8878

| RECEIVED FROM:          |       |    | LAB NO.  | 901814   |
|-------------------------|-------|----|----------|----------|
| AIRTECH ENVIROMENTAL    |       |    | LAD NU.  | 09/29/11 |
| 601A COUNTRY CLUB DRIVE |       |    | SAMPLED  | 09/29/11 |
|                         |       |    | RECEIVED | 10/07/11 |
| BENSONVILLE, IL         | 60106 | 14 | REPORTED | 11/03/11 |

SAMPLE MARKED: PROJECT #3648 WILSON-RUN 2 3AM CHLORINE 402 MG/KG DRY (USGS BULLETIN 1823) MERCURY 0.080 MG/KG DRY OR PPM DRY (ASTM 6722) FLUORINE 56 MG/KG DRY (ASTM 3761-96)

|                                                    | ANALYSIS REPORT |           |
|----------------------------------------------------|-----------------|-----------|
|                                                    | AS RECEIVED     | DRY BASIS |
| % Moisture                                         | 9.99            |           |
| % Ash                                              | 7.69            | 8.54      |
| % Sulfur                                           | 3.69            | 4.10      |
| B.T.U                                              | 12,123          | 13,468    |
| BTU (Moisture-ash free)                            | 14,             | 726       |
| % Volatile Matter                                  | 27.43           | 30.47     |
| % Fixed Carbon                                     | 54.89           | 60.99     |
| 3.04 Lbs. Sul./mil. BTU<br>6.34 Lbs. Ash./mil. BTU |                 |           |
| 2                                                  |                 |           |

THE ABOVE ANALYTICAL RESULTS WERE OBTAINED FOLLOWING ASTM PROCEDURES.

APPROVED BY

G&C COAL ANALYSIS LAB., INC.



## G and C Coal Analysis Lab., Inc.

1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

RECEIVED FROM:

AIRTECH ENVIRONMENTAL 601A COUNTRY CLUB DRIVE BENSONVILLE, IL 60106

|      | Lab #     | 901814   |
|------|-----------|----------|
| Date | Sampled:  | 09/29/11 |
| Date | Received: | 10/07/11 |
| Date | Reported: | 11/03/11 |
|      |           |          |

SAMPLE MARKED: PROJECT #3648 BIG RIVERS-WILSON RUN #2

### Procedure used following ASTM Method D-5373-02

|               |                | ULTIMATE ANALYSIS |                                         |  |
|---------------|----------------|-------------------|-----------------------------------------|--|
|               |                | As Received**     | Dry Basis                               |  |
|               |                |                   | میں اور میں میں نہیں ہوا <u>اور اور</u> |  |
|               | % CARBON       | 67.98             | 75.52                                   |  |
|               | % HYDROGEN     | l 4.19            | 4.66                                    |  |
| (by differenc | % NITROGEN     | 1.38              | 1.53                                    |  |
|               | % OXYGEN<br>e) | 5.09              | 5.65                                    |  |
|               | % ASH          | 7.69              | 8.54                                    |  |
|               | % SULFUR       | 3.69              | 4.10                                    |  |
|               | % MOISTURE     | 9.99              |                                         |  |

\*\*Hydrogen and Oxygen do not include the Hydrogen and Oxygen from the Moisture.

| ined following ASTM procedures. | G& C COAL ANALYSIS LAB., INC. |
|---------------------------------|-------------------------------|
| APPROVED BY                     | haven les                     |
|                                 |                               |

The above analytical results were obtained following ASTM procedures.



**Received From:** 

Airtech Environmental 601A Country Club Drive Bensonville, IL 60106 Date Sampled: 09/29/11 Date Received: 10/07/11 Date Reported: 11/03/11 G&C Lab# 901814

G and C Coal Analysis Lab., Inc. 1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

| Sample Marked: |
|----------------|
| PO# 3648       |
| BIG RIVERS     |
| WILSON RUN #2  |

| % TOTAL MOISTURE            | 9.99            |                                                                                               |                       |
|-----------------------------|-----------------|-----------------------------------------------------------------------------------------------|-----------------------|
| % ASH DRY<br>% ASH RECEIVED | 8.54<br>7.69    | Procedure Followed: EPA-SW-846,Method 3030<br>Acid Digestion of Sediments, Sludges, and Solid |                       |
|                             | OF ASH<br>MG/KG | COAL(DRY)<br>MG/KG                                                                            | COAL(AS REC)<br>MG/KG |
| Antimony                    | 0.26            | 0.02                                                                                          | 0.02                  |
| Arsenic                     | 15.81           | 1.35                                                                                          | 1.22                  |
| Beryllium                   | 3.28            | 0.28                                                                                          | 0.25                  |
| Cadmium                     | 0.28            | 0.02                                                                                          | 0.02                  |
| Chromium                    | 20.86           | 1.78                                                                                          | 1.60                  |
| Cobalt                      | 9.64            | 0.82                                                                                          | 0.74                  |
| Lead                        | 52.25           | 4.46                                                                                          | 4.02                  |
| Manganese                   | 51.39           | 4.39                                                                                          | 3.95                  |
| Nickel                      | 293.05          | 25.03                                                                                         | 22.53                 |
| Selenium                    | 1.76            | 0.15                                                                                          | 0.14                  |

The above analytical results were obtained following ASTM procedures.

TM procedures.

G & C COAL ANALYSIS LAB., INC.

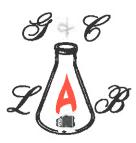
APPROVED BY



## G and C COAL ANALYSIS LAB., INC.

1341 HOFFMAN HOLLOW RD. SUMMERVILLE, PA 15864 (814) 849-2559 FAX (814) 849-8878

| RECEIVED FROM:          |       | LAB NO.  | 901812   |
|-------------------------|-------|----------|----------|
| AIRTECH ENVIROMENTAL    |       | SAMPLED  | 09/29/11 |
| 601A COUNTRY CLUB DRIVE |       | RECEIVED | 10/07/11 |
| BENSONVILLE, IL         | 60106 | REPORTED | 11/03/11 |


SAMPLE MARKED: PROJECT #3648 WILSON-RUN 3 7 AM CHLORINE 358 MG/KG DRY (USGS BULLETIN 1823) MERCURY 0.078 MG/KG DRY OR PPM DRY (ASTM 6722) FLUORINE 55 MG/KG DRY (ASTM 3761-96)

|                                                    | ANALYSIS R  | EPORT     |
|----------------------------------------------------|-------------|-----------|
|                                                    | AS RECEIVED | DRY BASIS |
| % Moisture                                         | 8.80        |           |
| % Ash                                              | 7.13        | 7 . 82    |
| % Sulfur                                           | 3.69        | 4.05      |
| B.T.U                                              | 12,289      | 13,475    |
| BTU (Moisture-ash free)                            | 14,         | 618       |
| % Volatile Matter                                  | 25.86       | 28.35     |
| % Fixed Carbon                                     | 58.21       | 63.83     |
| 3.00 Lbs. Sul./mil. BTU<br>5.80 Lbs. Ash./mil. BTU |             |           |
|                                                    |             |           |

THE ABOVE ANALYTICAL RESULTS WERE OBTAINED FOLLOWING ASTM PROCEDURES.

APPROVED BY

G&CCOALANALYSIS LAB., INC.



## G and C Coal Analysis Lab., Inc.

1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

RECEIVED FROM:

AIRTECH ENVIRONMENTAL 601A COUNTRY CLUB DRIVE BENSONVILLE, IL 60106

|      | Lab # :   | 901812   |
|------|-----------|----------|
| Date | Sampled:  | 09/29/11 |
| Date | Received: | 10/07/11 |
| Date | Reported: | 11/03/11 |

SAMPLE MARKED: PROJECT #3648 BIG RIVERS-WILSON RUN #3

### Procedure used following ASTM Method D-5373-02

|                      |            | As Received** | Dry Basis |
|----------------------|------------|---------------|-----------|
| %                    | 6 CARBON   | 69.57         | 76.28     |
| %                    | 6 HYDROGEN | 4.08          | 4.47      |
| %                    | 6 NITROGEN | 1.40          | 1.53      |
| %<br>(by difference) | 6 OXYGEN   | 5.34          | 5.85      |
| %                    | 6 ASH      | 7.13          | 7.82      |
| %                    | 6 SULFUR   | 3.69          | 4.05      |
| %                    | 6 MOISTURE | 8.80          |           |

\*\*Hydrogen and Oxygen do not include the Hydrogen and Oxygen from the Moisture.

| TM procedures. | G & C COAL ANALYSIS LAB., INC. |  |
|----------------|--------------------------------|--|
| APPROVED BY    | Francian                       |  |
|                |                                |  |

The above analytical results were obtained following ASTM procedures.



**Received From:** 

G and C Coal Analysis Lab., Inc.

1341 Hoffman Hollow Road Summerville, Pa 15864 814-849-2559 Fax: 814-849-8878

| Airtech Environmental                                     | Date Sampled:  | 09/29/11 |
|-----------------------------------------------------------|----------------|----------|
| 601A Country Club Drive<br>Bensonville, IL 60106          | Date Received: | 10/07/11 |
|                                                           | Date Reported: | 11/03/11 |
| Sample Marked:<br>PO# 3648<br>BIG RIVERS<br>WILSON RUN #3 | G&C Lab#       | 901812   |

| % TOTAL MOISTURE | 8.80   |           |                               |
|------------------|--------|-----------|-------------------------------|
| % ASH DRY        | 7.82   |           | d: EPA-SW-846,Method 3030B,   |
| % ASH RECEIVED   | 7.13   |           | ediments, Sludges, and Solids |
|                  | OF ASH | COAL(DRY) | COAL(AS REC)                  |
|                  | MG/KG  | MG/KG     | MG/KG                         |
| Antimony         | 0.09   | 0.01      | 0.01                          |
| Arsenic          | 21.09  | 1.65      | 1.50                          |
| Beryllium        | 0.97   | 0.08      | 0.07                          |
| Cadmium          | 0.48   | 0.04      | 0.03                          |
| Chromium         | 34.46  | 2.69      | 2.46                          |
| Cobalt           | 21.56  | 1.69      | 1.54                          |
| Lead             | 81.40  | 6.37      | 5.81                          |
| Manganese        | 86.70  | 6.78      | 6.18                          |
| Nickel           | 525.67 | 41.11     | 37.49                         |
| Selenium         | 2.24   | 0.18      | 0.16                          |

The above analytical results were obtained following ASTM procedures.

| TM procedures. | G & C COAL ANALYSIS LAB., INC. |
|----------------|--------------------------------|
| APPROVED BY    | horenlen                       |
|                |                                |

## **Calibration Data**

.

Airtech Environmental Services, Inc. Meter Box Full Test Calibration

9/12/2011 Date:

Operator: <u>i burotn</u>

| Meter Box ID M-14 | ) M-14 |              |                  | Meter Box AF | Н@       |                      | 1.801 | Meter Box Y <sub>d</sub> |      |                | 1.0052 | Barometric P | Barometric Pressure (in. Hg. | ( <del>)</del> | 29.50 |
|-------------------|--------|--------------|------------------|--------------|----------|----------------------|-------|--------------------------|------|----------------|--------|--------------|------------------------------|----------------|-------|
| Time              |        | Ortfice Data |                  |              |          |                      |       | Meter Box Data           | Data |                |        |              |                              | Results        |       |
| (min)             | ¥      | Vacuum       | T <sub>amb</sub> | Var          | Vinitial | , V <sub>final</sub> | Vď    | ΑH                       | Т,   | T <sub>o</sub> | Taro   | Vmstd        | σ                            | ۲ď             | AH@   |
| 5.0               | 0.3445 | 22.0         | 77               | 2.193        | 878.10   | 880.35               | 2.25  | 0.63                     | 76   | 74             | 75     | 2.192        | 0.439                        | 1.0004         | 1.781 |
| 5.0               | 0.3445 | 22.0         | 76               | 2.195        | 880.35   | 882.60               | 2.25  | 0.63                     | 76   | 74             | 75.0   | 2.192        | 0.439                        | 1.0013         | 1.781 |
| 5.0               | 0.3445 | 22.0         | 77               | 2.193        | 882.60   | 884.85               | 2.25  | 0.63                     | 77   | 75             | 76.0   | 2.188        | 0.439                        | 1.0022         | 1.785 |
| 5.0               | 0.4436 | 20.0         | 78               | 2.821        | 885.10   | 888.00               | 2.90  | 1.05                     | 78   | 75             | 76.5   | 2.820        | 0.564                        | 1.0002         | 1.792 |
| 5.0               | 0.4436 | 20.0         | 79               | 2.818        | 888.00   | 890.89               | 2.89  | 1.05                     | 78   | 75             | 76.5   | 2.811        | 0.564                        | 1.0028         | 1.804 |
| 5.0               | 0.4436 | 20.0         | 79               | 2.818        | 890.89   | 893.79               | 2.90  | 1.05                     | 79   | 75             | 0.77   | 2.818        | 0.564                        | 1.0003         | 1.794 |
| 5.0               | 0.5885 | 18.0         | 79               | 3.739        | 894.20   | 898.02               | 3.82  | 1.8                      | 80   | 76             | 78.0   | 3.711        | 0.748                        | 1.0074         | 1.775 |
| 5.0               | 0.5885 | 18.0         | 80               | 3.735        | 898.02   | 901.85               | 3.83  | 1.8                      | 82   | 77             | 5'64   | 3.711        | 0.747                        | 1.0066         | 1.771 |
| 5.0               | 0.5885 | 18.0         | 80               | 3.735        | 901.85   | 905.66               | 3.81  | 1.8                      | 83   | 77             | 80.0   | 3.688        | 0.747                        | 1.0129         | 1.791 |
| 5.0               | 0.7954 | 15.0         | 80               | 5.049        | 906.00   | 911.16               | 5.16  | 3.4                      | 85   | 78             | 81.5   | 5.001        | 1.010                        | 1.0096         | 1.850 |
| 5.0               | 0.7954 | 15.0         | 80               | 5.049        | 911.16   | 916.33               | 5.17  | 3.4                      | 87   | 78             | 82.5   | 5.001        | 1.010                        | 1.0095         | 1.846 |
| 5.0               | 0.7954 | 15.0         | 80               | 5.049        | 916.33   | 921.51               | 5.18  | 3.4                      | 88   | 79             | 83.5   | 5.002        | 1.010                        | 1.0094         | 1.843 |
|                   |        |              |                  |              |          |                      |       |                          |      |                |        |              |                              |                |       |
|                   |        |              |                  |              |          |                      |       |                          |      |                |        |              |                              |                |       |
|                   |        |              |                  |              |          |                      |       |                          |      |                |        |              |                              |                |       |
|                   |        |              |                  |              |          |                      |       |                          |      |                |        |              | Average                      | 1.0052         | 1.801 |

| Varencietation         Varenum Cuege         Thermometera           **         Critical Ontifice Coefficient         **           **         Critical Ontifice Coefficient         **           **         Multient Temperature (°F)         **         **           **         Volume Through Ontifice (sch)         *         **         **           **         Volume Through Ontifice (sch)         **         **         **         **           **         Volume Through Ontifice (sch)         **         **         **         **         **           **         Volume Through Ontifice (sch)         **         **         **         **         **         **           **         Volume Through Ontifice (sch)         **         **         **         **         **         **           **         Meter Nolume (f*)         10         10:0         50         50         51         49           **         Meter Outlet Temperature (**)         **         **         **         **         **         **           **         Meter Outlet Temperature (**)         **         **         **         **         **         **         **         **         **         ** <td< th=""><th>Equations</th><th></th><th><math>V_{cc} = K^* + P_b * \Theta</math></th><th><math>(T_{mb} + 460) \land 0.5</math></th><th></th><th><math>V_{mod} = \frac{17.64 * V_d * (P_b + (\Delta H 13.6))}{(V_{m,2} + 46.0)}</math></th><th></th><th><math>Q = V_{\rm eff}/\theta</math></th><th></th><th><math display="block">Y_d = V_\alpha / V_{mstd}</math></th><th></th><th><math display="block">\Delta H(\underline{a}) = \underline{0319 * \Delta H * (T_{ave} + 460) * 0^{-2}}{p_{1} * V ^{-2} * V ^{-2}}</math></th><th>4日 151 4 AE 4</th><th></th></td<> | Equations          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{cc} = K^* + P_b * \Theta$ | $(T_{mb} + 460) \land 0.5$       |                                                    | $V_{mod} = \frac{17.64 * V_d * (P_b + (\Delta H 13.6))}{(V_{m,2} + 46.0)}$ |                                 | $Q = V_{\rm eff}/\theta$          |                                         | $Y_d = V_\alpha / V_{mstd}$             |                    | $\Delta H(\underline{a}) = \underline{0319 * \Delta H * (T_{ave} + 460) * 0^{-2}}{p_{1} * V ^{-2} * V ^{-2}}$ | 4日 151 4 AE 4             |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|-----|
| Nomenclature         Vecture Gaage         Thermoneter           Critical Orfice Coefficient         (r)         (r)           Ambient Temperature (°F)         Standard         Vacuum         (r)           Ambient Temperature (°F)         Standard         (r)         1           Volume Through Orfice (scf)         (r)         (r)         1         1           Volume Through Orfice (scf)         (r)         (r)         1         1         1           Gas Meter Volume (fr)         (r)         (r)         (r)         100         100         100           Meter Inlat Temperature (°F)         Driftee Pressure Differential (n. H <sub>2</sub> O)         20         20.0         150         150           Meter Outlet Temperature (°F)         20         20.0         150         212         212           Volume Meter Outlet Temperature (°F)         20         20.0         150         300         300           Flow Rate (scfm)         Meter Correction Feator (dimensionless)         Moter Correction Feator (dimensionless)         200         500         361           Meter Correction Feator (dimensionless)         Moter Correction Feator (dimensionless)         200         500         501         501           Meter Correction Feator (dimensionless) <t< th=""><th></th><th>Ch No.</th><th>e</th><th>32</th><th>49</th><th>66</th><th>149</th><th>212</th><th>249</th><th>300</th><th>349</th><th>400</th><th>499</th><th>600</th></t<>                                                                                                                                                                                                                                                                                |                    | Ch No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e                             | 32                               | 49                                                 | 66                                                                         | 149                             | 212                               | 249                                     | 300                                     | 349                | 400                                                                                                           | 499                       | 600 |
| Nomenclature         Vecture Gaage         Thermoneter           Critical Orfice Coefficient         (r)         (r)           Ambient Temperature (°F)         Standard         Vacuum         (r)           Ambient Temperature (°F)         Standard         (r)         1           Volume Through Orfice (scf)         (r)         (r)         1         1           Volume Through Orfice (scf)         (r)         (r)         1         1         1           Gas Meter Volume (fr)         (r)         (r)         (r)         100         100         100           Meter Inlat Temperature (°F)         Driftee Pressure Differential (n. H <sub>2</sub> O)         20         20.0         150         150           Meter Outlet Temperature (°F)         20         20.0         150         212         212           Volume Meter Outlet Temperature (°F)         20         20.0         150         300         300           Flow Rate (scfm)         Meter Correction Feator (dimensionless)         Moter Correction Feator (dimensionless)         200         500         361           Meter Correction Feator (dimensionless)         Moter Correction Feator (dimensionless)         200         500         501         501           Meter Correction Feator (dimensionless) <t< td=""><th>57</th><td>Ch No.</td><td>2</td><td>32</td><td>51</td><td>101</td><td>152</td><td>214</td><td>252</td><td>302</td><td>352</td><td>402</td><td>502</td><td>602</td></t<>                                                                                                                                                                                                                                                                             | 57                 | Ch No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                             | 32                               | 51                                                 | 101                                                                        | 152                             | 214                               | 252                                     | 302                                     | 352                | 402                                                                                                           | 502                       | 602 |
| Nomenclature     Vecture Guage       Image: Critical Orfice Coefficient     (im. Hg.)       Ambient Temperature (°F.)     Standard       Ambient Temperature (°F.)     5       Volume Through Orfice (scf.)     5       Standard     Standard       Standard     Standard       Ambient Temperature (°F.)     10       Orfice Pressure Differential (In. H <sub>2</sub> O)     15       Mater Inlat Temperature (°F.)     20       Meter Outlet Temperature (°F.)     20       Meter Outlet Temperature (°F.)     25       Volume Meterad Standardized (scf.)     25       Flow Rate (scfm.)     10       Meter Correction Feator (dimensionless)     10       Meter Correction Feator (dimensionless)     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (hemometen<br>(*F) | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | -                             | 31                               | 50                                                 | 100                                                                        | 150                             | 212                               | 251                                     | 300                                     | 351                | 400                                                                                                           | 501                       | 601 |
| Nomenclature         Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 32                               | 50                                                 | 100                                                                        | 150                             | 212                               | 250                                     | 300                                     | 350                | 400                                                                                                           | 500                       | 600 |
| Nomenclature           Critical Orffice Coefficient           Ambient Temperature (°F)           Volume Through Orffice (scf)           Gas Meter Volume (ff*)           Orifice Pressure Differential (in. H <sub>2</sub> O)           Meter Inlet Temperature (°F)           Meter Standardized (scf)           Volume Metered Standardized (scf)           Flow Rate (scfm)           Meter Correction Factor (dimensionless)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uage<br> )         | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gausse                        | 5.0                              | 10.0                                               | 15.0                                                                       | 20.0                            | 25.0                              |                                         |                                         |                    |                                                                                                               |                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vacuum G<br>(in Hg | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 2                                | 10                                                 | 15                                                                         | 20                              | 25                                |                                         |                                         |                    |                                                                                                               |                           |     |
| ×   희 >   >   オ   ⊢   -   -   -   =   0   >   ヹ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nomenclature       | K' Critical Orflice Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lamb Ambient Temperature (°F) | Ver Volume Through Orifice (scf) | V <sub>d</sub> Gas Meter Volume (ft <sup>3</sup> ) | AH Orifice Pressure Differential (In. H <sub>2</sub> O)                    | Ti Meter Inlet Temperature (°F) | To Meter Outlet Temperauture (°F) | Lave Average Meter Box Temperature ("F) | Vmeid Volume Metered Standardized (scf) | Q Flow Rate (scfm) | Y <sub>d</sub> Meter Correction Factor (dimensionless)                                                        | AH@ AH yielding 0.75 scfm |     |

## Airtech Environmental Services Meter Post Calibration

| Average Field Sample Rate (AH)   | 1.800 | Date        | 10/3/2011  |
|----------------------------------|-------|-------------|------------|
| Highest Field Vacuum (inches Hg) | 12    | Client      | Big Rivers |
| Critical Orifice ID              | AA-63 | Project No. | 3648       |
| Orifice Flow Rate (cfm)          | 0.752 | Meter ID    | M-14       |

| أجريب ويجريفه الخيارة ويردخ سيروا    |                  |        |        |
|--------------------------------------|------------------|--------|--------|
|                                      | Run 1            | Run 2  | Run 3  |
| Initial Volume (ft <sup>3</sup> )    | 558.80           | 562.56 | 566.31 |
| Final Volume (ft <sup>3</sup> )      | 562.56           | 566.31 | 570.07 |
| Volume Metered (ft <sup>3</sup> )    | 3.76             | 3.75   | 3.76   |
| DGM Inlet Temperature (°F)           | 73               | 74     | 76     |
| DGM Outlet Temperature (°F)          | 68               | 69     | 69     |
| Average DGM Temperature (°F)         | 70.5             | 71.5   | 72.5   |
| Ambient Temperature (°F)             | 81               | 82     | 82     |
| Elapsed Time (min.)                  | 5                | 5      | 5      |
| $\Delta H$ (inches H <sub>2</sub> O) | 1.80             | 1.80   | 1.80   |
| Barometric Pressure (inches Hg)      | 29.5             | 29.5   | 29.5   |
| Pump Vacuum (inches Hg)              | 18               | 18     | 18     |
| K'                                   | 0.5885           | 0.5885 | 0.5885 |
| Vcr (ft <sup>3</sup> )               | 3.732            | 3.729  | 3.729  |
| Vmstd (ft <sup>3</sup> )             | 3.705            | 3.688  | 3.691  |
| Post Test Yc                         | 1.0073           | 1.0110 | 1.0102 |
| Full Test Yd                         | 1.0052           | 1.0052 | 1.0052 |
| % Difference                         | -0.21            | -0.58  | -0.50  |
|                                      | Average % Differ | ence   | -0.43  |

Airtech Environmental Services, Inc. Meter Box Full Test Calibration

4/19/2011 Date:

Operator: <u>i burton</u>

| Meter Box ID M-19 | M-19   |              |      | Meter Box AH | НQ       |        | 1.801 | Meter Box Y <sub>d</sub> |      |      | 1.0101 | Barometric P | Barometric Pressure (in. Hg.) | 9.)     | 29.35 |
|-------------------|--------|--------------|------|--------------|----------|--------|-------|--------------------------|------|------|--------|--------------|-------------------------------|---------|-------|
| Time              |        | Orifice Data | 6    |              |          |        |       | Meter Box Data           | Data |      |        |              |                               | Results |       |
| 0 (min)           | ¥.     | Vacuum       | Famb | Vcr          | Vinitial | Vfmal  | Vd    | Η                        | T,   | T.   | Tavg   | Vmstd        | a                             | ۶       | 0HD   |
| 5.0               | 0.3445 | 23.0         | 68   | 2.200        | 262.00   | 264.23 | 2.23  | 0.62                     | 71   | 68   | 69.5   | 2.184        | 0.440                         | 1.0075  | 1.758 |
| 5.0               | 0.3445 | 23.0         | 68   | 2.200        | 264.23   | 266.47 | 2.24  | 0.62                     | 72   | 20   | 71.0   | 2.187        | 0.440                         | 1.0058  | 1.747 |
| 5.0               | 0.3445 | 23.0         | 68   | 2.200        | 266.47   | 268.70 | 2.23  | 0.61                     | 72   | 69   | 70.5   | 2.180        | 0.440                         | 1.0094  | 1.733 |
| 5.0               | 0.4436 | 21.0         | 67   | 2.836        | 269.00   | 271.90 | 2.90  | 1.05                     | 72   | 69   | 70.5   | 2.838        | 0.567                         | 0.9993  | 1.764 |
| 5.0               | 0.4436 | 21.0         | 67   | 2.836        | 271.90   | 274.79 | 2.89  | 1.05                     | 73   | 69   | 71.0   | 2.825        | 0.567                         | 1.0037  | 1.778 |
| 5.0               | 0.4436 | 21.0         | 66   | 2,838        | 274.79   | 277.68 | 2.89  | 1.05                     | 73   | - 02 | 71.5   | 2.823        | 0.568                         | 1.0056  | 1.779 |
| 5.0               | 0.5885 | 19.0         | 68   | 3.758        | 278.10   | 281.94 | 3.84  | 1.9                      | 75   | 71   | 73.0   | 3.748        | 0.752                         | 1.0028  | 1.829 |
| 5.0               | 0.5885 | 19.0         | 68   | 3.758        | 281.94   | 285.75 | 3.81  | 1.9                      | 77   | 72   | 74.5   | 3.708        | 0.752                         | 1.0136  | 1.863 |
| 5.0               | 0.5885 | 19.0         | 68   | 3.758        | 285.75   | 289.58 | 3.83  | 1.9                      | 78   | 73   | 75.5   | 3.721        | 0.752                         | 1.0102  | 1.847 |
| 5.0               | 0.7994 | 15.0         | 69   | 5,101        | 290.00   | 295.17 | 5.17  | 3.4                      | 81   | 74   | 77.5   | 5.022        | 1.020                         | 1.0156  | 1.821 |
| 5.0               | 0.7994 | 15.0         | 70   | 5.096        | 295.17   | 300.32 | 5.15  | 3.4                      | 83   | 75   | 79.0   | 4.989        | 1.019                         | 1.0214  | 1.840 |
| 5.0               | 0.7994 | 15.0         | 70   | 5.096        | 300.32   | 305.46 | 5.14  | 3.4                      | 85   | 76   | 80.5   | 4.965        | 1.019                         | 1.0262  | 1.852 |
|                   |        |              |      |              |          |        |       |                          |      |      |        |              |                               |         |       |
|                   |        |              |      |              |          |        |       |                          |      |      |        |              |                               |         |       |
|                   |        |              |      |              |          |        |       |                          |      |      |        |              |                               |         |       |
|                   |        |              |      |              |          |        |       |                          |      |      |        |              | Average                       | 1.0101  | 1.801 |

| Macuum (tuege         Vacuum (tuege         Vacuum Standard           (m. Hg.)         (m. Hg.)         Standard         Vacuum Standard           (°F.)         5         5.0         32           cause         5         5.0         32           )         10         10.0         50           metal (In. H <sub>2</sub> O)         15         15.0         100           ential (In. H <sub>2</sub> O)         20         25         25.0         212           uture (°F)         25         25.0         212         300           dendized (sct)         25         25.0         212         300           or (dimensionless)         or (dimensionless)         400         500         500 | The mometers Equations (°F) | Cr. R. Ch. No. Ch. R.   | 2 3                    | 32 32 33 (T <sub>mb</sub> +460) ^ 0.5 | 50 51 51                           | 99 101 101 $V_{\text{r-rad}} = \frac{17.64 \cdot V_{\text{d}} + (P_{\text{b}} + (\Delta H'13.6))}{(T_{\text{r-rad}} + 460)}$ | 151 151 152                  | 213 214 214 Q=V <sub>a</sub> /θ | 251 251 352                        | 301 302 302 $Y_{d} = V_{ec}/V_{maid}$ | 350 352 352      | 400 401 402 $AH(6) = .0319 \cdot \Delta H * TT_{AL3} + 460) * 6^{A2}$ | 500 501 502           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|------------------------|---------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------|------------------------------------|---------------------------------------|------------------|-----------------------------------------------------------------------|-----------------------|
| ent       Vacuum Gua         (in Hg)       (in Hg)         (in Hg)       Standard         (°F)       5       10         (in H2O)       10       15         (in H2O)       10       15         (in H2O)       10       15         (in H2O)       20       20         (inture (°F)       20       20         uture (°F)       condicted (sch)       25         or (dimensionless)       or (dimensionless)       25                                                                                                                                                                                                                                                                                     | Ţ                           | Staridard               |                        |                                       |                                    |                                                                                                                              |                              |                                 | 250                                | 300                                   | 350              | 400                                                                   | 500                   |
| Nomenclature<br>intical Orifice Coefficient<br>Imbient Temperature (°F)<br>olume Through Orifice (scf)<br>ias Meter Volume (ft <sup>3</sup> )<br>infice Pressure Differential (in. H <sub>2</sub> O)<br>infice Pressure Differential (in. H <sub>2</sub> O)<br>fieter Inliet Temperature (°F)<br>fieter Outlet Temperature (°F)<br>olume Metered Standardized (scf)<br>olume Metered Standardized (scf)<br>iow Rate (scfm)<br>leter Correction Factor (dimensionless)                                                                                                                                                                                                                                 | Vacuum Guage<br>(m. Hg.)    | _                       |                        | _                                     | _                                  | $\vdash$                                                                                                                     |                              | _                               |                                    |                                       |                  |                                                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mericiature                 | cal Orifice Coefficient | bient Temperature (°F) | lume Through Orifice (scf)            | as Meter Volume (ft <sup>3</sup> ) | rifice Pressure Differential (in. H <sub>2</sub> O)                                                                          | Meter Iniet Temperature (°F) | Meter Outlet Temperauture (°F)  | Average Meter Box Temperature (°F) | Volume Metered Standardized (scf)     | Flow Rate (sofm) | Meter Correction Factor (dimensionless)                               | AH yielding 0.75 scfm |

## Airtech Environmental Services Meter Post Calibration

| Average Field Sample Rate (AH)   | 1.900 | Date        | 10/3/2011  |
|----------------------------------|-------|-------------|------------|
| Highest Field Vacuum (inches Hg) | 18    | Client      | Big Rivers |
| Critical Orifice ID              | AA-63 | Project No. | 3648       |
| Orifice Flow Rate (cfm)          | 0.748 | Meter ID    | M-19       |

|                                      | Run 1            | Run 2  | Run 3  |
|--------------------------------------|------------------|--------|--------|
| Initial Volume (ft <sup>3</sup> )    | 64.60            | 68.34  | 72.08  |
| Final Volume (ft <sup>3</sup> )      | 68.34            | 72.08  | 75.82  |
| Volume Metered (ft <sup>3</sup> )    | 3.74             | 3.74   | 3.74   |
| DGM Inlet Temperature (°F)           | 72               | 73     | 74     |
| DGM Outlet Temperature (°F)          | 67               | 67     | 68     |
| Average DGM Temperature (°F)         | 69.5             | 70.0   | 71.0   |
| Ambient Temperature (°F)             | 77               | 78     | 79     |
| Elapsed Time (min.)                  | 5                | 5      | 5      |
| $\Delta H$ (inches H <sub>2</sub> O) | 1.80             | 1.80   | 1.80   |
| Barometric Pressure (inches Hg)      | 29.5             | 29.5   | 29.5   |
| Pump Vacuum (inches Hg)              | 19               | 19     | 19     |
| К'                                   | 0.5885           | 0.5885 | 0.5885 |
| Vcr (ft <sup>3</sup> )               | 3.746            | 3.742  | 3.739  |
| Vmstd (ft <sup>3</sup> )             | 3.692            | 3.689  | 3.682  |
| Post Test Yc                         | 1.0146           | 1.0146 | 1.0156 |
| Full Test Yd                         | 1.0101           | 1.0101 | 1.0101 |
| % Difference                         | -0.44            | -0.44  | -0.54  |
|                                      | Average % Differ | ence   | -0.48  |

Airtech Environmental Services, Inc. 30B Meter Box Full Test Calibration

1/5/2011

Date:

Operator: <u>S. Behan</u>ish

| Meter Box | M-25 A |              |      |        |          |        |       | Meter Box Y <sub>d</sub> |      | 0.9994         | Barom    | Barometric Pressure (in. Hg.) | ire (in. Hg.) |         | 24.57 |
|-----------|--------|--------------|------|--------|----------|--------|-------|--------------------------|------|----------------|----------|-------------------------------|---------------|---------|-------|
| Time      |        | Orrhice Data |      |        |          |        |       | Meter Box Data           | Data |                |          |                               |               | Results |       |
| 0 (min)   | K'     | Vacuum       | Tamb | Var    | Vinitial | Vfinal | ٩     | LPM                      |      | т <sub>т</sub> | Vmstd    | std                           | a             | ₽,      | QHQ   |
| 10.0      | 0.012  | 15.0         | 75   | 3.610  | 0.00     | 4.84   | 4.84  | 0.48                     |      | 115            | 5 3.654  |                               | 0.361         | 0.9880  | 1.544 |
| 10.0      | 0.012  | 15.0         | 75   | 3.610  | 4.84     | 9.63   | 4.79  | 0.48                     |      | 115            | 5 3.616  |                               | 0.361         | 0.9983  | 1.560 |
| 10.0      | 0.012  | 15.0         | 75   | 3.610  | 9.63     | 14.47  | 4.84  | 0.48                     |      | 116            | 6 3.647  |                               | 0.361         | 0.9897  | 1.547 |
| 10.0      | 0.028  | 14.0         | 75   | 8.422  | 00.0     | 10.95  | 10.95 | 1.10                     |      | 115            | 5 8.281  | -                             | 0.842         | 1.0171  | 0.683 |
| 10.0      | 0.028  | 14.0         | 75   | 8.422  | 10.95    | 22.03  | 11.08 | 1.11                     |      | 115            | 5 8.379  | -                             | 0.842         | 1.0051  | 0.675 |
| 10.0      | 0.028  | 14.0         | 75   | 8.422  | 22.03    | 33.00  | 10.97 | 1.10                     |      | 116            | 6 8.282  |                               | 0.842         | 1.0170  | 0.683 |
| 10.0      | 0.051  | 12.5         | 76   | 15.326 | 0.00     | 20.30  | 20.30 | 2.03                     |      | 116            | 6 15.368 |                               | 1.533         | 0.9973  | 0.369 |
| 10.0      | 0.051  | 12.5         | 77   | 15.312 | 20.30    | 40.68  | 20.38 | 2.04                     |      | 116            | 6 15.429 |                               | 1.531         | 0.9925  | 0.367 |
| 10.0      | 0.051  | 12.5         | 78   | 15.298 | 40.68    | 61.10  | 20.42 | 2.04                     |      | 116            | 6 15.459 |                               | 1.530         | 0.9896  | 0.367 |
|           |        |              |      |        |          |        |       |                          |      |                |          | Av .                          | Âverado       | 0 0004  | 0 866 |

| Équations                 |                              | $V_{\alpha} = K' \cdot P_{\alpha} + \theta$ | $(T_{mb} + 460) \land 0.5$ |                      | $V_{mald} = \underline{17,64 * V_d * (P_b + (\Delta H'13.6))}{(T_{cvie} + 460)}$ |                              | $Q = V_{\rm er} = 0$           |                                    | $Y_d = V_{cr}$ , $V_{matd}$     |                  | $\Delta H(\widehat{a}) = .03 \underline{19}^{\circ} \cdot \underline{\Delta H}^{\circ} (\underline{T}_{w}, + 460) * \underline{9}^{\circ} 2$ $P_{1} * V_{2}^{\circ} Y_{2} + V_{-}^{\circ} Y_{2}$ | 1 2                   |     |
|---------------------------|------------------------------|---------------------------------------------|----------------------------|----------------------|----------------------------------------------------------------------------------|------------------------------|--------------------------------|------------------------------------|---------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|
|                           | Ch: No.                      | Aux 2                                       | 34                         | 51                   | 102                                                                              | 152                          | 214                            | 252                                | 302                             | 352              | 402                                                                                                                                                                                              | 502                   | 602 |
|                           | Cit No                       | Aux 1                                       | 34                         | 51                   | 102                                                                              | 152                          | 214                            | 252                                | 302                             | 352              | 402                                                                                                                                                                                              | 502                   | 602 |
| l'hermometers<br>(°F)     | Sh No                        | Stack                                       | 33                         | 50                   | 101                                                                              | 151                          | 213                            | 251                                | 300                             | 350              | 401                                                                                                                                                                                              | 502                   | 601 |
| F                         | Standald.                    |                                             | 32                         | 50                   | 100                                                                              | 150                          | 212                            | 250                                | 300                             | 350              | 400                                                                                                                                                                                              | 500                   | 600 |
| lage (                    | Vacuum                       | Gauge .                                     | 5.0                        | 10.0                 | 15.0                                                                             | 20.0                         | 25.0                           |                                    |                                 |                  |                                                                                                                                                                                                  |                       |     |
| Vacuum Guage<br>(in: Hg.) | Standard                     |                                             | 5                          | 10                   | 15                                                                               | 20                           | 25                             |                                    |                                 |                  |                                                                                                                                                                                                  |                       |     |
| Nomenclature              | Critical Orifice Coefficient | Ambient Temperature (°F)                    | Volume Through Orifice (L) | Gas Meter Volume (L) | Orifice Pressure Differentiał (in. H <sub>2</sub> O)                             | Meter Inlet Temperature (°F) | Meter Outlet Temperauture (°F) | Average Meter Box Temperature (°F) | Volume Metered Standardized (L) | Flow Rate (scfm) | Meter Correction Factor (dimensionless)                                                                                                                                                          | AH yielding 0.75 scfm |     |
|                           | K'                           | T <sub>amb</sub>                            | V <sub>cr</sub>            | ٧d                   | Ч                                                                                | T,                           | T.                             | T <sub>avg</sub>                   | V <sub>metd</sub>               | ø                | ۲ <sub>d</sub>                                                                                                                                                                                   | ΔH@                   |     |

# Airtech Environmental Services Meter Post Calibration

| Average Field Sample Rate (Ipm)  | 0.300   | Date        | 10/3/2011  |
|----------------------------------|---------|-------------|------------|
| Highest Field Vacuum (inches Hg) | 4       | Client      | Big Rivers |
| Critical Orifice ID              | .35 LPM | Project No. | 3648       |
| Orifice Flow Rate (Ipm)          |         | Meter ID    | M-25-A     |

|                                 | Run 1            | Run 2  | Run 3  |
|---------------------------------|------------------|--------|--------|
| Initial Volume (I)              | 0.00             | 3.471  | 6.833  |
| Final Volume (i)                | 3.471            | 6.833  | 10.269 |
| Volume Metered (I)              | 3.471            | 3.362  | 3.436  |
| DGM Inlet Temperature (°F)      | 102              | 102    | 104    |
| DGM Outlet Temperature (°F)     | 102              | 102    | 104    |
| Average DGM Temperature (°F)    | 102.0            | 102.0  | 104.0  |
| Ambient Temperature (°F)        | 68               | 70     | 72     |
| Elapsed Time (min.)             | 10               | 10     | 10     |
| $\Delta H$ (inches $H_2O$ )     | 0.25             | 0.25   | 0.25   |
| Barometric Pressure (inches Hg) | 29.5             | 29.5   | 29.5   |
| Pump Vacuum (inches Hg)         | 20               | 20     | 20     |
| K'                              | 0.0090           | 0.0090 | 0.0090 |
| Vcr (l)                         | 3.272            | 3.266  | 3.260  |
| Vmstd (i)                       | 3.216            | 3.115  | 3.172  |
| Post Test Yc                    | 1.0174           | 1.0484 | 1.0275 |
| Full Test Yd                    | 0.9994           | 0.9994 | 0.9994 |
| % Difference                    | -1.80            | -4.90  | -2.81  |
|                                 | Average % Differ | ence   | -3.17  |

Airtech Environmental Services, Inc. 30B Meter Box Full Test Calibration

Date: 3/29/2011

Operator: <u>i burton</u>

| Meter Box | M-25B |              |                  |                 |          |        |        | Meter Box Y <sub>d</sub> |      | 1 | 1.0017         | Barometric P      | Barometric Pressure (in. Hg.) | (-B     | 29.50 |
|-----------|-------|--------------|------------------|-----------------|----------|--------|--------|--------------------------|------|---|----------------|-------------------|-------------------------------|---------|-------|
| Time      |       | Orifice Lata | 9                |                 |          |        |        | Meter Box Data           | Data |   |                |                   |                               | Results |       |
| 0 (min)   | K'    | Vacuum       | T <sub>amb</sub> | V <sub>cr</sub> | Vinitial | Vînal  | Vd     | LPM                      |      |   | T <sub>m</sub> | V <sub>mstd</sub> | ø                             | ۶       | QHQ   |
| 10.0      | 0.012 | 21.0         | 70               | 4.354           | 0.000    | 4.634  | 4.634  | 0.46                     |      |   | 100            | 4.311             | 0.435                         | 1.0100  | 1.293 |
| 10.0      | 0.012 | 21.0         | 70               | 4.354           | 4.634    | 9.253  | 4.619  | 0.46                     |      |   | 66             | 4.305             | 0.435                         | 1.0115  | 1.299 |
| 10.0      | 0.012 | 21.0         | 70               | 4.354           | 9.253    | 13.827 | 4.574  | 0.46                     |      |   | 98             | 4.271             | 0.435                         | 1.0196  | 1.322 |
| 10.D      | 0.019 | 20.0         | 68               | 6.907           | 0.000    | 7.530  | 7.530  | 0.75                     |      |   | 97             | 7.048             | 0.691                         | 0.9800  | 0.794 |
| 10.0      | 0.019 | 20.0         | 69               | 6.901           | 7.530    | 14.961 | 7.431  | 0.74                     |      |   | 96             | 6.968             | 0.690                         | 0.9904  | 0.803 |
| 10.0      | 0.019 | 20.0         | 70               | 6.894           | 14.961   | 22.428 | 7.467  | 0.75                     |      |   | 96             | 7.002             | 0.689                         | 0.9846  | 0.806 |
| 10.0      | 0.028 | 20.0         | 69               | 10.169          | 0.000    | 10.753 | 10.753 | 1.08                     |      |   | 96             | 10.091            | 1.017                         | 1.0078  | 0.560 |
| 10.0      | 0.028 | 20.0         | 69               | 10.169          | 10.753   | 21.576 | 10.823 | 1.08                     |      |   | 96             | 10.157            | 1.017                         | 1.0012  | 0.552 |
| 10.0      | 0.028 | 20.0         | 68               | 10.179          | 21.576   | 32.297 | 10.721 | 1.07                     |      |   | 95             | 10.079            | 1.018                         | 1.0099  | 0.557 |
| 10.0      | 0.041 | 19.0         | 68               | 14.905          | 0.000    | 15.482 | 15.482 | 1.55                     |      |   | 95             | 14.572            | 1.491                         | 1.0228  | 0.387 |
| 10.0      | 0.041 | 19.0         | 66               | 14.905          | 15.482   | 30.965 | 15.483 | 1.55                     |      |   | 95             | 14.573            | 1.491                         | 1.0228  | 0.387 |
| 10.0      | 0.041 | 19.0         | 68               | 14.905          | 30.985   | 46.450 | 15.465 | 1.55                     |      |   | 95             | 14.556            | 1.491                         | 1.0240  | 0.388 |
|           |       |              |                  |                 |          |        |        |                          |      |   |                |                   | Average                       | 1.0017  | 0.887 |
|           |       |              |                  |                 |          |        |        |                          |      |   |                |                   |                               |         |       |

|                   | Nomenclature                            |
|-------------------|-----------------------------------------|
| ¥                 | Critical Orifice Coefficient            |
| T <sub>amb</sub>  | Ambient Temperature (°F)                |
| V <sub>er</sub>   | Volume Through Orifice (L)              |
| V <sub>d</sub>    | Gas Meter Volume (L)                    |
| НΔ                | Orifice Pressure Differential (in. H.O) |
| Ľ                 | Meter Inlet Temperature (°F)            |
| ٦°                | Meter Outlet Temperauture (°F)          |
| Tag               | Average Meter Box Temperature (°F)      |
| V <sub>mold</sub> | Volume Metered Standardized (L)         |
| σ                 | Flow Rate (scfm)                        |
| ۲                 | Meter Correction Factor (dimensionless) |
| AH@               | AH yielding 0.75 scfm                   |

| Vacuum Guage<br>(in Hg.) | uage<br>.) | Ļ        | Thermometers<br>(°F) | 40    |       | Equations                                                                                             |
|--------------------------|------------|----------|----------------------|-------|-------|-------------------------------------------------------------------------------------------------------|
| Standard                 | Vacuum     | Standard | Ct: No               | CA No | Ch No |                                                                                                       |
|                          | Guuge.     |          | ٢                    | probe |       | $V_{eq} = \underline{K}^* = \underline{P}_b * \underline{\theta}$                                     |
| 5                        | 5.0        | 32       | 32                   | 32    |       | $(T_{mb} + 460) > 0.5$                                                                                |
| 10                       | 10.0       | 50       | 50                   | 49    |       |                                                                                                       |
| 15                       | 15.0       | 100      | 100                  | 101   |       | $V_{maid} = \underline{17.64 * V_d + (D_b + (\Delta H/13.6))}{(T_{a''z} + 460)}$                      |
| 20                       | 20.0       | 150      | 152                  | 152   |       |                                                                                                       |
| 25                       | 25.0       | 212      | 213                  | 213   |       | $\mathbf{Q} = \mathbf{V}_{\mathrm{eff}}$                                                              |
|                          |            | 250      | 250                  | 251   |       |                                                                                                       |
|                          |            | 300      | 299                  | 301   |       | $Y_d = V_{er} / V_{ustd}$                                                                             |
|                          |            | 350      | 350                  | 351   |       |                                                                                                       |
|                          |            | 400      | 401                  | 400   |       | $\Delta H(\vec{a}) = .0319 * \Delta H * (T_{ww} + 460) * 0^{-2}$<br>$P_{w} + Y_{a}^{-2} + V_{w}^{-2}$ |
|                          |            | 500      | 501                  | 501   |       |                                                                                                       |
|                          |            | 800      | B01                  | 003   |       |                                                                                                       |

# Airtech Environmental Services Meter Post Calibration

| Average Field Sample Rate (Ipm)  | 0.300   | Date        | 10/3/2011  |
|----------------------------------|---------|-------------|------------|
| Highest Field Vacuum (inches Hg) | 4       | Client      | Big Rivers |
| Critical Orifice ID              | .35 LPM | Project No. | 3648       |
| Orifice Flow Rate (Ipm)          | 0.3643  | Meter ID    | M-25-B     |

|                                 | · · · · · · · · · · · · · · · · · · · |        |        |
|---------------------------------|---------------------------------------|--------|--------|
|                                 | Run 1                                 | Run 2  | Run 3  |
| Initial Volume (I)              | 0.00                                  | 3.643  | 7.356  |
| Final Volume (I)                | 3.643                                 | 7.356  | 11.028 |
| Volume Metered (I)              | 3.643                                 | 3.713  | 3.672  |
| DGM Inlet Temperature (°F)      | 104                                   | 104    | 103    |
| DGM Outlet Temperature (°F)     | 104                                   | 104    | 103    |
| Average DGM Temperature (°F)    | 104.0                                 | 104.0  | 103.0  |
| Ambient Temperature (°F)        | 71                                    | 70     | 70     |
| Elapsed Time (min.)             | 10                                    | 10     | 10     |
| $\Delta H$ (inches $H_2O$ )     | 0.25                                  | 0.25   | 0.25   |
| Barometric Pressure (inches Hg) | 29.5                                  | 29.5   | 29.5   |
| Pump Vacuum (inches Hg)         | 20                                    | 20     | 20     |
| K'                              | 0.0090                                | 0.0090 | 0.0090 |
| Vcr (I)                         | 3.263                                 | 3.266  | 3.266  |
| Vmstd (I)                       | 3.363                                 | 3.428  | 3.396  |
| Post Test Yc                    | 0.9700                                | 0.9527 | 0.9616 |
| Full Test Yd                    | 1.0017                                | 1.0017 | 1.0017 |
| % Difference                    | 3.16                                  | 4.90   | 4.00   |
|                                 | Average % Differ                      | ence   | 4.02   |

Meter Box Full Test Calibration

DATE: 7/15/2011

Operator: Joe Ward

|     |       |                    |        |         |                    |        | ļ       |               |       |       |                   |        |        | 4                |         |                      |        |        |
|-----|-------|--------------------|--------|---------|--------------------|--------|---------|---------------|-------|-------|-------------------|--------|--------|------------------|---------|----------------------|--------|--------|
|     | ë     | Meter Box No: 2143 |        | 25      | M-2 Meter Box      | 1      | H@:     | 1.8295        |       | Meter | Meter Box Yd      | q      | 0.9976 |                  | Barom   | Barometric Pressure: | ssure: | 29.79  |
|     |       |                    |        | Standa  | Standard Meter Gas | er Gas | Me      | Meter Box Gas | Jas   | St    | Std. Meter        | л<br>И | M      | Meter Box        |         | lt.                  | e<br>1 |        |
|     |       |                    |        |         | Volume             |        | Ň       | Volume (ft()  | 0     | Temp  | Temperature (PF)  | (PF)   | Temp   | Temperature (PF) | (PF)    |                      |        |        |
| · • | 2     | Н                  | Yds    | Initial | Final              | ₩      | Initial | Final         | ٧f    | Inlet | Inlet Outlet Avg. | Avg.   | Inlet  | Outlet           | Avg     | Time                 | рХ     | Ш@     |
| 익   | -0.70 | 3.00               | 1.0000 | 0.0     | 5 000              | 5.000  | 71 639  | 76.825        | 5.186 | 74.0  | 74.0              | 74.0   | 96.0   | 86.0             | 91.0    | 5.15                 | 1.0039 | 1 7799 |
| 우   | -0.70 | 3.00               | 1.0000 | 0.0     | 5.000              | 5.000  | 76.825  | 82.002        | 5.177 | 74.0  | 74.0              | 74.0   | 96.0   | 86.0             | 91.0    | 5.18                 | 1.0057 | 1.8007 |
| 9   | -0.60 | 1.50               | 1.0000 | 0.0     | 5.005              | 5.005  | 88.458  | 93.637        | 5.179 | 74.0  | 74.0              | 74.0   | 91.0   | 86.0             | 88.5    | 7.32                 | 0.9978 | 1.7944 |
| 9   | -0.60 | 1.50               | 1.0000 | 0.0     | 5.005              | 5.005  | 93.637  | 98.827        | 5.190 | 74.0  | 74.0              | 74.0   | 91.0   | 86.0             | 88.5    | 7.28                 | 0.9957 | 1.7748 |
| 9   | -0.40 | 0.50               | 1.0000 | 0.0     | 5.000              | 5.000  | 102.295 | 107.455       | 5.160 | 74.0  | 74.0              | 74.0   | 86.0   | 83.0             | 84.5    | 13.07                | 0.9902 | 1.9213 |
| 9   | -0.40 | 0.50               | 1 0000 | 0.0     | 5.005              | 5.005  | 107.455 | 112.609       | 5.154 | 74.0  | 74.0              | 74.0   | 86.0   | 83.0             | 84.5    | 13.03                | 0.9924 | 1.9057 |
|     |       |                    |        |         |                    |        |         |               |       |       |                   |        |        |                  | AVERAGE | AGE                  | 9799   | 1.8295 |

Millennium Instruments Inc. 2402 Springridge Drive unit A Spring Grove IL. 60081 PHONE#(815)675-3225 FAX#(815)675-6965 E-mail millennium@millinst.com www.millinst.com

# Vacuum Gauge

| Gauge    | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 |  |  |
|----------|-----|------|------|------|------|--|--|
| (in. Hg) | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 |  |  |

# Pyrometer Calibration Sheet

| •                                                         | Office: <u>Spring</u><br>Client: Airtech<br>Job or Referen | h Environmental                                     |
|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|
| Calibration Reference<br>Settings for Fahrenheit<br>Scale | Pyrometer Reading                                          | Calibration Reference<br>Settings for Celsius Scale |
| 50° F                                                     | 50° F                                                      | 10°C                                                |
| 100° F                                                    | 100° F                                                     | 38°C                                                |
| 150° F                                                    | 150° F                                                     | 66°C                                                |
| 200° F                                                    | 200° F                                                     | 93°C                                                |
| 250° F                                                    | 250° F                                                     | 121°C                                               |
| 300° F                                                    | 300° F                                                     | 149°C                                               |
| 350° F                                                    | 350° F                                                     | 177°C                                               |
| 400° F                                                    | 400° F                                                     | 204°C                                               |
| 450° F                                                    | 450° F                                                     | 232°C                                               |
| 500° F                                                    | 500° F                                                     | 260°C                                               |
| 550° F                                                    | 550° F                                                     | 288°C                                               |
| 600° F                                                    | 600° F                                                     | 316°C                                               |

## Airtech Environmental Services Meter Post Calibration

| Average Field Sample Rate (∆H)   | 1.100 | Date        | 10/3/2011  |
|----------------------------------|-------|-------------|------------|
| Highest Field Vacuum (inches Hg) | 4     | Client      | Big Rivers |
| Critical Orifice ID              | BB-55 | Project No. | 3648       |
| Orifice Flow Rate (cfm)          | 0.592 | Meter ID    | M-28       |

|                                   |                  |        | NO     |
|-----------------------------------|------------------|--------|--------|
|                                   | Run 1            | Run 2  | Run 3  |
| Initial Volume (ft <sup>3</sup> ) | 260.40           | 263.36 | 266.32 |
| Final Volume (ft <sup>3</sup> )   | 263.36           | 266.32 | 269.28 |
| Volume Metered (ft <sup>3</sup> ) | 2.96             | 2.96   | 2.96   |
| DGM Inlet Temperature (°F)        | 72               | 72     | 72     |
| DGM Outlet Temperature (°F)       | 68               | 68     | 68     |
| Average DGM Temperature (°F)      | 70.0             | 70.0   | 70.0   |
| Ambient Temperature (°F)          | 76               | 77     | 76     |
| Elapsed Time (min.)               | 5                | 5      | 5      |
| $\Delta H$ (inches $H_2O$ )       | 1.10             | 1.10   | 1.10   |
| Barometric Pressure (inches Hg)   | 29.5             | 29.5   | 29.5   |
| Pump Vacuum (inches Hg)           | 22               | 22     | 22     |
| K                                 | 0.4436           | 0.4436 | 0.4436 |
| Vcr (ft <sup>3</sup> )            | 2.826            | 2.824  | 2.826  |
| Vmstd (ft <sup>3</sup> )          | 2.914            | 2.914  | 2.914  |
| Post Test Yc                      | 0.9698           | 0.9689 | 0.9698 |
| Full Test Yd                      | 0.9776           | 0.9776 | 0.9776 |
| % Difference                      | 0.80             | 0.89   | 0.80   |
|                                   | Average % Differ | ence   | 0.83   |

# Airtech Environmental Services, Inc.

S-Type Pitot Tube Inspection Form

| Date     | 1/26/11  |  |
|----------|----------|--|
| Pitot ID | AE5-12-2 |  |
| Operator | EA       |  |

|                                            | Measured | bewollA   |
|--------------------------------------------|----------|-----------|
| Outside Tube Diameter - Dt (inches)        | 0.250    | NA        |
| Base To Opening Distance - Pa (inches)     | 0.34     | NA        |
| Base To Opening Distance - Pb (inches)     | 0.34     | NA        |
| Pa/Dt                                      | 1.36     | 1.05-1.50 |
| Pb/Dt                                      | 1.36     | 1.05-1.50 |
| Angle u1(°)                                | 0.4      | 10        |
| Angle a2(°)                                | 1        | 10        |
| Angle B1(°)                                | 0.9      | 5         |
| Angle B1(°)                                | 0.1      | 5         |
| Opening to Opening Distance Pa+Pb (inches) | 0.680    | NA        |
| Angle Z (°)                                | 3.2      | NA        |
| z (inches)                                 | 0.0380   | 0.125     |
| Angle W (°)                                | 0.2      | NA        |
| w (inches)                                 | 0.002    | 0.031     |

Note Any Damage, Nicks or Dents to the Pitot Tube

Is the Pitot Tube Part of an Assembly

Yes

If Yes, Complete the Section Below

| Pitot                                   | Measured | Minimum  |
|-----------------------------------------|----------|----------|
| Distance From Nozzle (inches)           | 0.75     | 0.75 in. |
| Pitot to Thermocouple Distance (inches) | 2.25     | 2 in.    |
| Pitot to Sample Probe Distance (inches) | 6        | 3 in.    |

| Does the Pitot Tube Meet the Above Requirements | Yes |
|-------------------------------------------------|-----|
| Is the Pitot Tube Free of Damage                | Yes |

If Yes to Both, a Pitot Tube Coefficient of 0.84 is Assigned If No to Either, then the Pitot Tube Must be Calibrated

# Airtech Environmental Services, Inc.

S-Type Pitot Tube Inspection Form

| Date     | 1/26/11  |  |
|----------|----------|--|
| Pitot ID | AE5/13/1 |  |
| Operator | EA       |  |

|                                            | Measured | Allowed   |
|--------------------------------------------|----------|-----------|
| Outside Tube Diameter - Dt (inches)        | 0.250    | NA        |
| Base To Opening Distance - Pa (inches)     | 0.349    | NA        |
| Base To Opening Distance - Pb (inches)     | 0.349    | NA        |
| Pa/Dt                                      | 1.40     | 1.05-1.50 |
| Pb/Dt                                      | 1.40     | 1.05-1.50 |
| Angle α1(°)                                | 1.2      | 10        |
| Angle α2(°)                                | 1        | 10        |
| Angle B1(°)                                | 1.3      | 5         |
| Angle B1(°)                                | 2.2      | 5         |
| Opening to Opening Distance Pa+Pb (inches) | 0.698    | NA        |
| Angle Z (°)                                | 0.9      | NA        |
| z (inches)                                 | 0.0110   | 0.125     |
| Angle W (°)                                | 0.4      | NA        |
| w (inches)                                 | 0.005    | 0.031     |

Note Any Damage, Nicks or Dents to the Pitot Tube

Is the Pitot Tube Part of an Assembly

Yes

If Yes, Complete the Section Below

| Pitot                                   | Measured | Minimum  |
|-----------------------------------------|----------|----------|
| Distance From Nozzle (inches)           | 0.75     | 0.75 in. |
| Pitot to Thermocouple Distance (inches) | 2.5      | 2 in.    |
| Pitot to Sample Probe Distance (inches) | 5        | 3 in.    |

| Does the Pitot Tube Meet the Above Requirements | Yes |
|-------------------------------------------------|-----|
| Is the Pitot Tube Free of Damage                | Yes |

If Yes to Both, a Pitot Tube Coefficient of 0.84 is Assigned If No to Either, then the Pitot Tube Must be Calibrated

# Airtech Environmental Services, Inc.

S-Type Pitot Tube Inspection Form

DateJanuary 17, 2011Pitot IDAE5-12-4OperatorA. Kienitz

|                                            | Measured | Allowed   |
|--------------------------------------------|----------|-----------|
| Outside Tube Diameter - Dt (inches)        | 0.250    | NA        |
| Base To Opening Distance - Pa (inches)     | 0.356    | NA        |
| Base To Opening Distance - Pb (inches)     | 0.356    | NA        |
| Pa/Dt                                      | 1.424    | 1.05-1.50 |
| Pb/Dt                                      | 1.424    | 1.05-1.50 |
| Angle, α1(°)                               | 1        | 10        |
| Angle, α2(°)                               | 0        | 10        |
| Angle, B1(°)                               | 0        | 5         |
| Angle, B1(°)                               | 3        | 5         |
| Opening to Opening Distance Pa+Pb (inches) | 0.712    | NA        |
| Angle, Z (°)                               | 89       | NA        |
| z (inches)                                 | 0.030    | 0.125     |
| Angle, W (°)                               | 90       | NA        |
| w (inches)                                 | 0.003    | 0.031     |
| Pitot to Thermocouple Distance W (inches)  | 2.50     | ≥2        |

| ote Any Damage, Nicks or Dents to the Pitot Tube |  |
|--------------------------------------------------|--|
|                                                  |  |
|                                                  |  |
|                                                  |  |
|                                                  |  |
|                                                  |  |

Is the Pitot Tube Part of an Assembly

#### Yes

If Yes, Complete the Section Below

| Pitot                                     | Measured | Minimum |
|-------------------------------------------|----------|---------|
| Distance From Nozzle X (inches)           | 0.75     | 0.75    |
| Pitot to Sample Probe Distance, Y(inches) | 4.50     | 3       |

Does the Pitot Tube Meet the Above RequirementsYesIs the Pitot Tube Free of DamageYes

If Yes to Both, a Pitot Tube Coefficient of 0.84 is Assigned If No to Either, then the Pitot Tube Must be Calibrated

#### Airtech Environmental Services, Inc. Nozzle Calibration Form

| Client         | Big Rivers Electric | Job No.       | 3648                               |
|----------------|---------------------|---------------|------------------------------------|
| Plant          | DB Wilson Centerto  |               | n - Antonio an 17 p - 76200 (1943) |
|                | M- 55/292           | M-26A         | M-29                               |
|                | Nozzle 1            | Nozele 2      | Nozzle 3                           |
| Date           | 9/28-9/29           | 9/28-9/29     | 9/28-9/29                          |
| Nozzle ID      | 1350                | .350          | .310                               |
| Operator       | Ru                  | RG-           | Rh                                 |
| Test Location  | Stack withet        | Stack outlet! | strik offe                         |
| Run Number (s) | 1,2,3               | (,2,3         | (23                                |
| Diameter 1     | .354                | 344           | 311                                |
| Diameter 2     | 355                 | 365           | .212                               |
| Diameter 3     | ,356                | ,366          | 312-                               |
| Average        | .355                | .365          | .312                               |

| A CARLEN AND AND AND AND AND AND AND AND AND AN | Nozzie 4 | Nozzle 5 | Nozzle 3                               |
|-------------------------------------------------|----------|----------|----------------------------------------|
| Date                                            |          |          |                                        |
| Nozzle ID                                       |          |          | ·                                      |
| Operator                                        |          |          | ······································ |
| Test Location                                   |          |          |                                        |
| Run Number (s)                                  |          |          |                                        |
| Diameter 1                                      |          |          |                                        |
| Diameter 2                                      |          |          |                                        |
| Diameter 3                                      |          |          |                                        |
| Average                                         |          |          |                                        |

Notes:

Measurements must be made to the nearest 0.001 inches.

Three different diameters should be measured.

The difference between the high and low measurement must be less than 0.004 inches.

Signed

mt in

Date

<u>7/28/1</u>^

**Process Data** 

| Date         PLOM         CO22         C           Normal 110-11         100         100         100         100         100           Normal 110-11         100         100         100         1100         1100           Normal 110-11         100         100         100         1100         1100           Normal 110-11         100         100         100         1100         1100         1100           Normal 110-11         100         100         100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BODIH         BODIH         BODIH         BODIH           100         100         100         100         100         100         100           100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                         | OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2         OPACITY2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BOURTS         BOURTS         BOURTS           1         1         5000000000000000000000000000000000000                                                                                                                                      | BODERT         EDEDERT           2         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEUP           0.543         0.14           0.544         0.14           0.545         0.14           0.547         0.12           0.547         0.12           0.547         0.12           0.547         0.12           0.547         0.12           0.547         0.12           0.547         0.12           0.557         0.12           0.557         0.12           0.557         0.12           0.567         0.13           0.567         0.14           0.567         0.13           0.567         0.14           0.567         0.14           0.567         0.14           0.567         0.12           0.567         0.12           0.567         0.12           0.567         0.12           0.574         0.12           0.574         0.12           0.574         0.12           0.575         0.13           0.575         0.14           0.575         0.14           0.575         0.14           0.575         0.14 <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 Toron 10         8-5         11 01           1         1         1         1           1         1         1         1           2         1         1         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         80         1           2         1         1         1           2         1         1         1           2         1         1         1           2         1         1         1           2         1 <td>International         Class         Class</td> <td>13</td> <td>0.4         0.4           3.4         0.4           0.4         0.4           1.4         0.4           1.5         0.4           2.7         0.4           2.8         0.6           2.6         0.6           2.7         0.6           3.6         0.7           2.7         0.6           4         0.0           2.7         0.6           4         0.0           7         0.6           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0</td> <td>0.467 06.477<br/>0.767 0.471<br/>0.777 0.771<br/>0.777 0.777<br/>0.777 0.777<br/>0.777 0.777<br/>0.777 0.775<br/>0.777 0.775<br/>0.777 0.765<br/>0.775 0.765<br/>0.775 0.765<br/>0.775 0.755<br/>0.775 0.755<br/>0.775 0.755<br/>0.775 0.755<br/>0.775 0.755</td> <td>F034*         + 335           F047*         9031           B         -           C         100           C         100</td> <td>1274 010<br/>0271 056<br/>027 056<br/>027 056<br/>027 056<br/>0280 017<br/>0280 br/>0375<br/>0385<br/>0375<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385<br/>0385</td> | International         Class         Class | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4         0.4           3.4         0.4           0.4         0.4           1.4         0.4           1.5         0.4           2.7         0.4           2.8         0.6           2.6         0.6           2.7         0.6           3.6         0.7           2.7         0.6           4         0.0           2.7         0.6           4         0.0           7         0.6           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0           9         0.0 | 0.467 06.477<br>0.767 0.471<br>0.777 0.771<br>0.777 0.777<br>0.777 0.777<br>0.777 0.777<br>0.777 0.775<br>0.777 0.775<br>0.777 0.765<br>0.775 0.765<br>0.775 0.765<br>0.775 0.755<br>0.775 0.755<br>0.775 0.755<br>0.775 0.755<br>0.775 0.755 | F034*         + 335           F047*         9031           B         -           C         100           C         100 | 1274 010<br>0271 056<br>027 056<br>027 056<br>027 056<br>0280 017<br>0280 br>0375<br>0385<br>0375<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385<br>0385 |

ihiah • 07. 100001 0.072 0.271 0.272 0.271 0.275 0.271 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0 13." 8.246 6 746 -0 
 1
 211

 0.2
 4

 0.2
 6

 0.2
 6

 0.2
 6

 0.2
 6

 0.2
 6

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 7

 0.2
 635 6.39 6.30 6.32 12 339 347 5.1 6.5 5.1 6.5 5.1 6.5 5.1 6.5 6.5 71 6.35 6.3.27 8,21 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-3 1,2-31 - C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 200 (C 2 20) (C 2 200 (C 0...0 1.274 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1. 6 97% 6 17 6 127 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 1949 7 3 1 2 2 4 3 8 5 5 6 1 3 0.20 P 20 - 20 - 521 P 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 D 256 1.8

뼒 바라에서, 또한 가지, 것은 한 1000년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 2017년, 201 (2017년, 2017년, は、そのない、「ない」のない、「ない」のない、「ない」のない、「ないない」のない、「ないない」のない、「ないない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」の ない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」」のない、「ない」」のない、「ない」」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」のない、「ない」」のない 31.9 31.9 
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101</td 

hiah 14 14 37 8 k lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i lies k i l 
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House
 :House< 1210000 τάδοο άφος è e se o pabb ere pà éré se se source d'i to source the transportant or e se se se se se se se se s σε se sourcestricies serveres serveres serveres serveres serveres serveres serveres serveres serveres serveres s 0.2141 1.224 0.2141 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.214 0.224 0.225 0.225 0.225 0.224 0.224 0.224 0.225 0.224 0.224 0.225 0.225 0.224 0.225 0.224 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.225 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 - 100 - 281 - 287 - 287 - 286 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 280 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 - 281 0 0 116 0 0 %1 7 0 % 0 %

 
 Detu
 Time
 Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Secon 日期11272月1日。 1222月1日、日本市場合、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市場合」、「日本市」」、「日本市」」、「日本市場合」、「日本市」」、「日本市」」、「日本市」」、「日本市」」、日 
 b
 duction
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ ck llow) \$0 k (hiuh) the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second はなかった。そうないたちがはないたいで、たちにはないないたかできた。そうないたいで、そうないたいでは、そうないたちが、そうないたいで、そうないたいで、そうないたいでは、そうないたちが、そうないたいで、 そうないたちが、そうないたちが、そうないたいで、そうないたいで、そうないたいで、そうないたいで、そうないたいで、そうないたいで、そうないたいで、そうないたちが、そうないたちが、そうないたいで、そうないたいで、そうないたいで、 
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 2410.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 2412.11 241 これます。いうアメスクロアには、アッカス、「おおんだがいたい」などのない。アッカスアンになっていたい、そのから、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、「おいたい」、